Skip to main content

Advertisement

Log in

Vulnerability of solar energy infrastructure and output to climate change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper reviews the potential vulnerability of solar energy systems to future extreme event risks as a consequence of climate change. We describe the three main technologies likely to be used to harness sunlight—thermal heating, photovoltaic (PV), and concentrating solar power (CSP)—and identify critical climate vulnerabilities for each one. We then compare these vulnerabilities with assessments of future changes in mean conditions and extreme event risk levels. We do not identify any vulnerabilities severe enough to halt development of any of the technologies mentioned, although we do find a potential value in exploring options for making PV cells more heat-resilient and for improving the design of cooling systems for CSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aringhoff R, Brakmann G, Geyer M, Teske S (2005) Concentrated solar thermal power - now! Greenpeace, Amsterdam, ESTIA, Brussels and SolarPACES, Aguadulce, Spain

  • Armstrong S, Hurley W (2010) A new methodology to optimise solar energy extraction under cloudy conditions. Renew Energy 35(4):780–787. doi:10.1016/j.renene.2009.10.018

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Esch M, Keenlyside N, Kornblueh L, Luo J, Yamagata T (2007) How may tropical cyclones change in a warmer climate? Tellus A 59(4):539–561. doi:10.1111/j.1600-0870.2007.00251.x

    Article  Google Scholar 

  • Carr AJ, Pryor TL (2003) A comparison of the performance of different PV module types in temperate climates. Sol Energy 76(1–3):285–294. doi:10.1016/j.solener.2003.07.026

    Google Scholar 

  • Crook JA, Jones LA, Forster PM, Crook R (2011) Climate change impacts on future photovoltaic and concentrated solar power energy systems. Energy Environ Sci 4:3101–3109

    Article  Google Scholar 

  • Damerau K, Williges K, Patt A, Gauché P (2011) Costs of reducing water use of concentrating solar power to sustainable levels: scenarios for North Africa. Energy Policy 39:4391–4398. doi:10.1016/j.enpol.2011.04.059

    Article  Google Scholar 

  • Deutsche Gesellschaft für Sonnenenergie (2008) Planning and installing photovoltaic systems. Earthscan, London

    Google Scholar 

  • DLR (2007) Concentrating power for seawater desalination. German Aerospace Center. http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/projects/aqua-csp/AQUA-CSP-Full-Report-Final.pdf. Accessed 8 April 2013

  • DOE (2007) Concentrating solar power commercial application study: Reducing water consumption of concentrating solar power electricity generation. U.S. Department of Energy, Washington

    Google Scholar 

  • Eltawil MA, Zhao Z (2010) Grid-connected photovoltaic power systems: Technical and potential problems — A review. Renew Sustain Energy Rev 14(1):112–129. doi:10.1016/j.rser.2009.07.015

    Article  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nat 436:686–688

    Article  Google Scholar 

  • ESTIF (2009) Solar thermal markets in Europe—Trends and market statistics 2008. European solar thermal industry federation. Renewable Energy House, Brussels

    Google Scholar 

  • Goossens D, Van Kerschaever E (1999) Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol Energy 66(4):277–289. doi:10.1016/S0038-092X(99)00028-6

    Article  Google Scholar 

  • Gottschalg R, Betts T, Williams S, Sauter D, Infield D, Kearney M (2004) A critical appraisal of the factors affecting energy production from amorphous silicon photovoltaic arrays in a maritime climate. Sol Energy 77(6):909–916. doi:10.1016/j.solener.2004.06.015

    Article  Google Scholar 

  • Harder E, Gibson JM (2011) The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates. Renew Energy 36(2):789–796. doi:10.1016/j.renene.2010.08.006

    Article  Google Scholar 

  • Honeyborne R (2009) Flat plate versus evacuated tube solar collectors. ITS Solar, Capetown

    Google Scholar 

  • IEA (2010) Energy Technology Perspectives 2010: Scenarios and Strategies to 2050. OECD Publishing, Paris. http://www.oecdilibrary.org/oecd/content/book/9789264041431-en. Accessed 23 April 2013

  • Jacob D, Winner D (2009) Effect of climate change on air quality. Atmospheric Environ 43(1):51–63

    Article  Google Scholar 

  • Jacobson MZ, Delucchi MA (2010) Readers respond on "A path to sustainable energy by 2030". Scientific American. http://www.scientificamerican.com/article.cfm?id = letters-march-2010. Accessed 5 April 2013

  • Jewell WT, Unruh TD (1990) Limits on cloud-induced fluctuation in photovoltaic generation. IEEE Trans Energy Convers 5(1):8–14. doi:10.1109/60.50805

    Article  Google Scholar 

  • Jilbert T, Reichart G, Aeschlimann B, Günther D, Boer W, de Lange G (2010) Climate-controlled multidecadal variability in North African dust transport to the Mediterranean. Geol 38(1):19–22. doi:10.1130/G25287.1

    Article  Google Scholar 

  • Kelly NA, Gibson TL (2009) Improved photovoltaic energy output for cloudy conditions with a solar tracking system. Sol Energy 83(11):2092–2102. doi:10.1016/j.solener.2009.08.009

    Article  Google Scholar 

  • Kharin V, Zwiers F (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173. doi:10.1175/JCLI3320.1

    Article  Google Scholar 

  • Khosla V (2008) Scalable electric power from solar energy. The Climate Group, Brussels

    Google Scholar 

  • Kurtz S, Granata J, Quintana M, (2009a) Photovoltaic Reliability R&D Toward a Solar-Powered World. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 27

  • Kurtz S, Miller D et al (2009b) Evaluation of high-temperature exposure of photovoltaic modules. National Renewable Energy Laboratory, Philadelphia

    Google Scholar 

  • Lobell DB, Bonfils C, Duffy PB (2007) Climate change uncertainty for daily minimum and maximum temperatures: A model intercomparison. Geophys Res Lett 34(5), L05715. doi:10.1029/2006GL028726

    Article  Google Scholar 

  • Makrides G, Zinsser B, Georghiou GE, Schubert M, Werner JH (2009) Temperature behaviour of different photovoltaic systems installed in Cyprus and Germany. Sol Energy Mater Sol Cells 93(6–7):1095–1099. doi:10.1016/j.solmat.2008.12.024

    Google Scholar 

  • Márquez Salazar C (2008) An overview of CSP in Europe, North Africa and the Middle East. CSP today, London

    Google Scholar 

  • McDonald R, Bleaken D, Cresswell D, Pope V, Senior C (2005) Tropical storms: Representation and diagnosis in climate models and the impacts of climate change. Clim Dyn 25(1):19–36. doi:10.1007/s00382-004-0491-0

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–846

    Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, ad longer lasting heat waves in the 21st century. Sci 305:994–997. doi:10.1126/science.1098704

    Article  Google Scholar 

  • Mohandes B, El-Chaar L, Lamont L (2009) Application study of 500W photovoltaic (PV) system in the UAE. Appl Solar Energy 45(4):242–247. doi:10.3103/S0003701X09040057

    Article  Google Scholar 

  • Mohring HD, Stellbogen D, Schiffer R, et al. (2004) Outdoor performance of polycrystalline thin film PV modules in different European climates. In Proceedings of the 19th European Photovoltaic Solar Energy Conference, pp 2098–2101

  • Nelson J (2003) The physics of solar cells. Imperial College Press, London

    Book  Google Scholar 

  • Niall S, Walsh K (2005) The impact of climate change on hailstorms in southeastern Australia. Int J Climatol 25:1933–1952. doi:10.1002/joc.1233

    Article  Google Scholar 

  • Norton B (2006) Anatomy of a solar collector: Developments in materials, components and efficiency improvements in solar thermal collector systems. Refocus 7(3):32–35. doi:10.1016/S1471-0846(06)70570-4

    Article  Google Scholar 

  • Norton B, Edmonds J (1991) Aqueous propylene-glycol concentrations for the freeze protection of thermosyphon solar energy water heaters. Sol Energy 47(5):375–382. doi:10.1016/0038-092X(91)90031-Q

    Article  Google Scholar 

  • Osterwald CR, McMahon TJ (2009) History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review. ProgPhotovolt: Res Appl 17(1):11–33. doi:10.1002/pip.861

    Article  Google Scholar 

  • Pitz-Paal R, Dersch J, Milow B (2004) ECOSTAR: European Concentrated Solar Thermal Roadmapping. German Aerospace Center (DLR), Stuttgart

  • Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Sci 302(5647):1024–1027. doi:10.1126/science.1089915

    Article  Google Scholar 

  • Radziemska E (2003) The effect of temperature on the power drop in crystalline silicon solar cells. Renew Energy 28(1):1–12. doi:10.1016/S0960-1481(02)00015-0

    Article  Google Scholar 

  • Richter C, Teske S, Short R (2009) Concentrating solar power. Global outlook 09. Greenpeace International, SolarPACES, ESTELA, Brussels

    Google Scholar 

  • Royne A, Dey CJ, Mills DR (2005) Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol Energy Mater Sol Cells 86(4):451–483. doi:10.1016/j.solmat.2004.09.003

    Article  Google Scholar 

  • Salinger MJ, Griffiths GM, Gosai A (2005) Extreme pressure differences at 0900 NZST and winds across New Zealand. Int J Climatol 25:1203–1222. doi:10.1002/joc.1162

    Article  Google Scholar 

  • Seyboth K, Beurskens L, Langniss O, Sims R (2008) Recognising the potential for renewable energy heating and cooling. Energy Policy 36(7):2460–2463. doi:10.1016/j.enpol.2008.02.046

    Article  Google Scholar 

  • Smits A, Klein Tank A, Können G (2005) Trends in storminess over the Netherlands. Int J Climatol 25:1331–1344. doi:10.1002/joc.1195

    Article  Google Scholar 

  • Speer B, Mendelsohn M, Cory K (2010) Insuring solar photovoltaics: Challenges and possible solutions: NREL/TP-6A2-46932. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  • SPF (2009) Schlussbericht Impact Resistance Solarthermische Kollektoren [Final Report on the Impact Resistance of Solar Thermal Collectors]. Institut für Solartechnik SPF, HSR, Rapperswil, Switzerland

    Google Scholar 

  • Stancich R (2010) CSP O&M: Dust-proof solar fields. CSP today, London

    Google Scholar 

  • TamizhMani G (2008) Failure analysis of design qualification testing: 2007 vs. 2005. Photovolt Int 1:112–116

    Google Scholar 

  • Tanagnostopoulos Y, Themelis P (2010) Natural Flow Air Cooled Photovoltaics. In: Angelopoulos A, Fildisis T (eds.) In 7th International Conference of the Balkan Physical Union. American Institute of Physics, Alexandroupolis, Greece, pp 1013–1018. doi: 10.1063/1.3322300. http://link.aip.org/link/?APC/1203/1013/1

  • Thornton JP (1992) The effect of sandstorms on PV arrays and components. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Trenberth KE, Fasullo J (2009) Global warming due to increasing absorbed solar radiation. Geophys Res Lett 36(7), L07706. doi:10.1029/2009GL037527

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M (eds) Climate change 2007: The physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 236–336

    Google Scholar 

  • Trinkl C, Zörner W, Alt C, Stadler C (2005) Performance of vacuum tube and flat plate collectors concerning domestic hot water preparation and room heating. Appl Sci 2005:2–5

    Google Scholar 

  • Vick B, Clark RN (2005) Effect of Panel Temperature on a Solar-PV AC Water Pumping System. In Proceedings of the International Solar Energy Society (ISES). Orlando, Florida, pp. 159–164

  • Weisheimer A, Palmer TN (2005) Changing frequency of occurence of extreme seasonal-mean temperatures under global warming. Geophys Res Lett 32(20), L20721. doi:10.1029/2005GL023365

    Article  Google Scholar 

  • Williges K, Lilliestam J, Patt A (2010) Making concentrated solar power competitive with coal: The costs of a European feed-in tariff. Energy Policy 38(6):3089–3097. doi:10.1016/j.enpol.2010.01.049

    Article  Google Scholar 

  • Wohlgemuth JH (2003) Long-term photovoltaic module reliability. In NCPV and Solar Program Review Meeting, Denver, Colorado, USA. NREL/CD-520-33586, 2003:179–183

Download references

Acknowledgments

We would like to acknowledge the helpful comments of the organizers of a conference on energy system vulnerability to climate change, held in June 2010 at the International Centre for Theoretical Physics (ICTP), in Trieste, Italy, and three anonymous reviewers. Funding came from the ICTP, the International Atomic Energy Agency, and the RESPONSES project of the European Union Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Patt.

Additional information

This article is part of the Special Issue on “Climate Change, Extremes, and Energy Systems”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patt, A., Pfenninger, S. & Lilliestam, J. Vulnerability of solar energy infrastructure and output to climate change. Climatic Change 121, 93–102 (2013). https://doi.org/10.1007/s10584-013-0887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-0887-0

Keywords

Navigation