Skip to main content

Ketamine Action on Astrocytes Provides New Insights into Rapid Antidepressant Mechanisms

  • Chapter
  • First Online:
Astrocytes in Psychiatric Disorders

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 26))

Abstract

Ketamine, a non-competitive N-methyl-d-aspartate receptor (NMDAR) antagonist, exerts rapid, potent and long-lasting antidepressant effect already after a single administration of a low dose into depressed individuals. Apart from targeting neuronal NMDARs essential for synaptic transmission, ketamine also interacts with astrocytes, the principal homoeostatic cells of the central nervous system. The cellular mechanisms underlying astrocyte-based rapid antidepressant effect are incompletely understood. Here we overview recent data that describe ketamine-dependent changes in astrocyte cytosolic cAMP activity ([cAMP]i) and ketamine-induced modifications of stimulus-evoked Ca2+ signalling. The latter regulates exocytotic release of gliosignalling molecules and stabilizes the vesicle fusion pore in a narrow configuration that obstructs cargo discharge or vesicle membrane recycling. Ketamine also instigates rapid redistribution of cholesterol in the astrocyte plasmalemma that may alter flux of cholesterol to neurones, where it is required for changes in synaptic plasticity. Finally, ketamine attenuates mobility of vesicles carrying the inward rectifying potassium channel (Kir4.1) and reduces the surface density of Kir4.1 channels that control extracellular K+ concentration, which tunes the pattern of action potential firing in neurones of lateral habenula as demonstrated in a rat model of depression. Thus, diverse, but not mutually exclusive, mechanisms act synergistically to evoke changes in synaptic plasticity leading to sustained strengthening of excitatory synapses necessary for rapid antidepressant effect of ketamine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelhamid RE, Kovács KJ, Nunez MG, Larson AA (2014) Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors. Pharmacol Res 79:21–27

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Fiumelli H, Magistretti PJ, Martin JL (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 216:75–84

    Article  CAS  PubMed  Google Scholar 

  • Ardalan M, Rafati AH, Nyengaard JR, Wegener G (2017) Rapid antidepressant effect of ketamine correlates with astroglial plasticity in the hippocampus. Br J Pharmacol 174:483–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahnasi YM, Wright HM, Milligan CJ, Dedman AM, Zeng F, Hopkins PM, Bateson AN, Beech DJ (2008) Modulation of TRPC5 cation channels by halothane, chloroform and propofol. Br J Pharmacol 153:1505–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barley K, Dracheva S, Byne W (2009) Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res 112:54–64

    Article  PubMed  Google Scholar 

  • Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongur D, Cohen BM (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 35:2049–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergami M, Santi S, Formaggio E, Cagnoli C, Verderio C, Blum R, Berninger B, Matteoli M, Canossa M (2008) Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 183:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 16:634–646

    Article  CAS  PubMed  Google Scholar 

  • Bjorkholm C, Monteggia LM (2016) BDNF – a key transducer of antidepressant effects. Neuropharmacology 102:72–79

    Article  PubMed  CAS  Google Scholar 

  • Borner S, Schwede F, Schlipp A, Berisha F, Calebiro D, Lohse MJ, Nikolaev VO (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6:427–438

    Article  PubMed  CAS  Google Scholar 

  • Bowley MP, Drevets WC, Ongur D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52:404–412

    Article  PubMed  Google Scholar 

  • Braun K, Antemano R, Helmeke C, Buchner M, Poeggel G (2009) Juvenile separation stress induces rapid region- and layer-specific changes in S100ss- and glial fibrillary acidic protein-immunoreactivity in astrocytes of the rodent medial prefrontal cortex. Neuroscience 160:629–638

    Article  CAS  PubMed  Google Scholar 

  • Breslin K, Wade JJ, Wong-Lin K, Harkin J, Flanagan B, Van Zalinge H, Hall S, Walker M, Verkhratsky A, McDaid L (2018) Potassium and sodium microdomains in thin astroglial processes: a computational model study. PLoS Comput Biol 14:e1006151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    Article  CAS  PubMed  Google Scholar 

  • Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12:386–394

    Article  PubMed  Google Scholar 

  • Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, Ma S, Sang K, Tang S, Li Y, Shen Y, Berry H, Wu S, Hu H (2018) Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554:323–327

    Article  CAS  PubMed  Google Scholar 

  • Czeh B, Di Benedetto B (2013) Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 23:171–185

    Article  CAS  PubMed  Google Scholar 

  • Czeh B, Simon M, Schmelting B, Hiemke C, Fuchs E (2006) Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 31:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Dietschy JM, Turley SD (2001) Cholesterol metabolism in the brain. Curr Opin Lipidol 12:105–112

    Article  CAS  PubMed  Google Scholar 

  • Dietz AG, Goldman SA, Nedergaard M (2020) Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry 7(3):272–281

    Article  PubMed  Google Scholar 

  • Domino EF (2010) Taming the ketamine tiger. 1965. Anesthesiology 113:678–684

    Article  PubMed  Google Scholar 

  • Dong L, Li B, Verkhratsky A, Peng L (2015) Cell type-specific in vivo expression of genes encoding signalling molecules in the brain in response to chronic mild stress and chronic treatment with fluoxetine. Psychopharmacology 232:2827–2835

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiacco TA, Agulhon C, McCarthy KD (2009) Sorting out astrocyte physiology from pharmacology. Annu Rev Pharmacol Toxicol 49:151–174

    Article  CAS  PubMed  Google Scholar 

  • Fujiki M, Steward O (1997) High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Brain Res Mol Brain Res 44:301–308

    Article  CAS  PubMed  Google Scholar 

  • Furutani K, Ohno Y, Inanobe A, Hibino H, Kurachi Y (2009) Mutational and in silico analyses for antidepressant block of astroglial inward-rectifier Kir4.1 channel. Mol Pharmacol 75:1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Gittins RA, Harrison PJ (2011) A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. J Affect Disord 133:328–332

    Article  PubMed  Google Scholar 

  • Goritz C, Mauch DH, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 29:190–201

    Article  CAS  PubMed  Google Scholar 

  • Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hama H, Hara C, Yamaguchi K, Miyawaki A (2004) PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41:405–415

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Li B, Song D, Ren J, Dong L, Chen Y, Peng L (2012) Astrocytes as a 5-HT2B-mediated SERT-independent SSRI target, slowly altering depression-associated genes and function. Curr Signal Transduct Ther 7(1):65–80

    Article  CAS  Google Scholar 

  • Hertz L, Rothman DL, Li B, Peng L (2015) Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 9:25

    PubMed  PubMed Central  Google Scholar 

  • Hisaoka-Nakashima K, Kajitani N, Kaneko M, Shigetou T, Kasai M, Matsumoto C, Yokoe T, Azuma H, Takebayashi M, Morioka N, Nakata Y (2016) Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia. Brain Res 1634:57–67

    Article  CAS  PubMed  Google Scholar 

  • Holden C (2003) Psychiatric drugs. Excited by glutamate. Science 300:1866–1868

    Article  CAS  PubMed  Google Scholar 

  • Howe WM, Kenny PJ (2018) Burst firing sets the stage for depression. Nature 554:304–305

    Article  CAS  PubMed  Google Scholar 

  • Iwata M, Shirayama Y, Ishida H, Hazama GI, Nakagome K (2011) Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats. Hippocampus 21:877–884

    CAS  PubMed  Google Scholar 

  • Jain MK, Jahagirdar DV, Van Linde M, Roelofsen B, Eibl H (1985) Solute-induced acceleration of transbilayer movement and its implications on models of blood-brain barrier. Biochim Biophys Acta 818:356–364

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Salton SR (2013) The role of neurotrophins in major depressive disorder. Transl Neurosci 4:46–58

    Article  PubMed  Google Scholar 

  • Kabaso D, Calejo AI, Jorgacevski J, Kreft M, Zorec R, Iglic A (2012) Fusion pore diameter regulation by cations modulating local membrane anisotropy. ScientificWorldJournal 2012:983138

    PubMed  PubMed Central  Google Scholar 

  • Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, Lepack A, Majik MS, Jeong LS, Banasr M, Son H, Duman RS (2012) Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 18:1413–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keiser M, Hasan M, Oswald S (2018) Affinity of ketamine to clinically relevant transporters. Mol Pharm 15:326–331

    Article  CAS  PubMed  Google Scholar 

  • Kittel-Schneider S, Kenis G, Schek J, van den Hove D, Prickaerts J, Lesch KP, Steinbusch H, Reif A (2012) Expression of monoamine transporters, nitric oxide synthase 3, and neurotrophin genes in antidepressant-stimulated astrocytes. Front Psych 3:33

    Google Scholar 

  • Koyama Y, Ishibashi T, Hayata K, Baba A (1993) Endothelins modulate dibutyryl cAMP-induced stellation of cultured astrocytes. Brain Res 600:81–88

    Article  CAS  PubMed  Google Scholar 

  • Kragh J, Bolwig TG, Woldbye DP, Jorgensen OS (1993) Electroconvulsive shock and lidocaine-induced seizures in the rat activate astrocytes as measured by glial fibrillary acidic protein. Biol Psychiatry 33:794–800

    Article  CAS  PubMed  Google Scholar 

  • Kreft M, Jorgacevski J, Stenovec M, Zorec R (2018) Angstrom-size exocytotic fusion pore: implications for pituitary hormone secretion. Mol Cell Endocrinol 463:65–71

    Article  CAS  PubMed  Google Scholar 

  • Kritchevsky D, Tepper SA, Davidson LM, Story JA (1976) Influence of ketamine, phenylcyclidine, and phenobarbital on cholesterol metabolism in rats. Proc Soc Exp Biol Med 151:445–447

    Article  CAS  PubMed  Google Scholar 

  • Lasic E, Rituper B, Jorgacevski J, Kreft M, Stenovec M, Zorec R (2016) Subanesthetic doses of ketamine stabilize the fusion pore in a narrow flickering state in astrocytes. J Neurochem 138:909–917

    Article  CAS  PubMed  Google Scholar 

  • Lasic E, Lisjak M, Horvat A, Bozic M, Sakanovic A, Anderluh G, Verkhratsky A, Vardjan N, Jorgacevski J, Stenovec M, Zorec R (2019) Astrocyte specific remodeling of plasmalemmal cholesterol composition by ketamine indicates a new mechanism of antidepressant action. Sci Rep 9:10957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lester HA, Lavis LD, Dougherty DA (2015) Ketamine inside neurons? Am J Psychiatry 172:1064–1066

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Yao X, Sun L, Zhao L, Xu W, Zhao H, Zhao F, Zou X, Cheng Z, Li B, Yang W, Cui R (2020) Effects of electroconvulsive therapy on depression and its potential mechanism. Front Psychol 11:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Song D, Yan E, Verkhratsky A, Peng L (2015) Chronic treatment with anti-bipolar drugs suppresses glutamate release from astroglial cultures. Amino Acids 47:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Liu SL, Sheng R, Jung JH, Wang L, Stec E, O’Connor MJ, Song S, Bikkavilli RK, Winn RA, Lee D, Baek K, Ueda K, Levitan I, Kim KP, Cho W (2017) Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol 13:268–274

    Article  CAS  PubMed  Google Scholar 

  • Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  CAS  PubMed  Google Scholar 

  • Malarkey EB, Ni Y, Parpura V (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56:821–835

    Article  PubMed  Google Scholar 

  • Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357

    Article  CAS  PubMed  Google Scholar 

  • Mazzanti M, Haydon PG (2003) Astrocytes selectively enhance N-type calcium current in hippocampal neurons. Glia 41:128–136

    Article  PubMed  Google Scholar 

  • Mion G, Villevieille T (2013) Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther 19:370–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitterauer BJ (2012) Ketamine may block NMDA receptors in astrocytes causing a rapid antidepressant effect. Front Synaptic Neurosci 4:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai Y, Hirase H (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun 7:11100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musazzi L, Rimland JM, Ieraci A, Racagni G, Domenici E, Popoli M (2014) Pharmacological characterization of BDNF promoters I, II and IV reveals that serotonin and norepinephrine input is sufficient for transcription activation. Int J Neuropsychopharmacol 17:779–791

    Article  CAS  PubMed  Google Scholar 

  • Nagler K, Mauch DH, Pfrieger FW (2001) Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J Physiol 533:665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB, APA Council of Research Task Force on Novel Biomarkers and Treatments (2015) Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry 172:950–966

    Article  PubMed  Google Scholar 

  • Nimmerjahn A (2009) Astrocytes going live: advances and challenges. J Physiol 587:1639–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML (2016) The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 132:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113:221–233

    Article  CAS  PubMed  Google Scholar 

  • Ohno Y, Hibino H, Lossin C, Inanobe A, Kurachi Y (2007) Inhibition of astroglial Kir4.1 channels by selective serotonin reuptake inhibitors. Brain Res 1178:44–51

    Article  CAS  PubMed  Google Scholar 

  • Ohno-Iwashita Y, Iwamoto M, Ando S, Mitsui K, Iwashita S (1990) A modified theta-toxin produced by limited proteolysis and methylation: a probe for the functional study of membrane cholesterol. Biochim Biophys Acta 1023:441–448

    Article  CAS  PubMed  Google Scholar 

  • Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 95:13290–13295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng HB, Yang JF, Dai Z, Lee CW, Hung HW, Feng ZH, Ko CP (2003) Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 23:5050–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Li B, Verkhratsky A (2016) Targeting astrocytes in bipolar disorder. Expert Rev Neurother 16:649–657

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Song D, Li B, Verkhratsky A (2018) Astroglial 5-HT2B receptor in mood disorders. Expert Rev Neurother 18(5):435–442

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  CAS  PubMed  Google Scholar 

  • Pfenninger KH (2009) Plasma membrane expansion: a neuron’s Herculean task. Nat Rev Neurosci 10:251–261

    Article  CAS  PubMed  Google Scholar 

  • Pfrieger FW (2010) Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 63:39–46

    Article  CAS  PubMed  Google Scholar 

  • Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277:1684–1687

    Article  CAS  PubMed  Google Scholar 

  • Potokar M, Stenovec M, Jorgacevski J, Holen T, Kreft M, Ottersen OP, Zorec R (2013) Regulation of AQP4 surface expression via vesicle mobility in astrocytes. Glia 61:917–928

    Article  PubMed  Google Scholar 

  • Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16:313–320

    Article  PubMed  Google Scholar 

  • Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Song D, Bai Q, Verkhratsky A, Peng L (2015) Fluoxetine induces alkalinization of astroglial cytosol through stimulation of sodium-hydrogen exchanger 1: dissection of intracellular signaling pathways. Front Cell Neurosci 9:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera AD, Butt AM (2019) Astrocytes are direct cellular targets of lithium treatment: novel roles for lysyl oxidase and peroxisome-proliferator activated receptor-gamma as astroglial targets of lithium. Transl Psychiatry 9:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanacora G, Banasr M (2013) From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73:1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santello M, Volterra A (2009) Synaptic modulation by astrocytes via Ca2+−dependent glutamate release. Neuroscience 158:253–259

    Article  CAS  PubMed  Google Scholar 

  • Saranteas T, Zotos N, Lolis E, Stranomiti J, Mourouzis C, Chantzi C, Tesseromatis C (2005) Mechanisms of ketamine action on lipid metabolism in rats. Eur J Anaesthesiol 22:222–226

    Article  CAS  PubMed  Google Scholar 

  • Schipke CG, Heuser I, Peters O (2011) Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 45:242–248

    Article  PubMed  Google Scholar 

  • Schiweck J, Eickholt BJ, Murk K (2018) Important shapeshifter: mechanisms allowing astrocytes to respond to the changing nervous system during development, injury and disease. Front Cell Neurosci 12:261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, Rehal S, Klempan T, Gratton A, Benkelfat C, Rouleau GA, Mechawar N, Turecki G (2009) Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One 4:e6585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slezak M, Pfrieger FW (2003) New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci 26:531–535

    Article  CAS  PubMed  Google Scholar 

  • Stenovec M, Lasic E, Bozic M, Bobnar ST, Stout RF Jr, Grubisic V, Parpura V, Zorec R (2016) Ketamine inhibits ATP-evoked exocytotic release of brain-derived neurotrophic factor from vesicles in cultured rat astrocytes. Mol Neurobiol 53:6882–6896

    Article  CAS  PubMed  Google Scholar 

  • Stenovec M, Bozic M, Pirnat S, Zorec R (2020) Astroglial mechanisms of ketamine action include reduced mobility of Kir4.1-carrying vesicles. Neurochem Res 45(1):109–121

    Article  CAS  PubMed  Google Scholar 

  • Su S, Ohno Y, Lossin C, Hibino H, Inanobe A, Kurachi Y (2007) Inhibition of astroglial inwardly rectifying Kir4.1 channels by a tricyclic antidepressant, nortriptyline. J Pharmacol Exp Ther 320:573–580

    Article  CAS  PubMed  Google Scholar 

  • Sun JD, Liu Y, Yuan YH, Li J, Chen NH (2012) Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 37:1305–1320

    Article  CAS  PubMed  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  PubMed  Google Scholar 

  • Takano K, Yamasaki H, Kawabe K, Moriyama M, Nakamura Y (2012) Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes. J Pharmacol Sci 120:176–186

    Article  CAS  PubMed  Google Scholar 

  • Tassonyi E, Charpantier E, Muller D, Dumont L, Bertrand D (2002) The role of nicotinic acetylcholine receptors in the mechanisms of anesthesia. Brain Res Bull 57:133–150

    Article  CAS  PubMed  Google Scholar 

  • Theodosis DT, Poulain DA, Oliet SH (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88:983–1008

    Article  CAS  PubMed  Google Scholar 

  • Thrane AS, Rangroo Thrane V, Zeppenfeld D, Lou N, Xu Q, Nagelhus EA, Nedergaard M (2012) General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc Natl Acad Sci U S A 109:18974–18979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond Ser B Biol Sci 369:20130595

    Article  CAS  Google Scholar 

  • Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Rodriguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Rodriguez JJ, Steardo L (2014) Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 20:576–588

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Zorec R, Parpura V (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathol 27:629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignoli B, Battistini G, Melani R, Blum R, Santi S, Berardi N, Canossa M (2016) Peri-synaptic glia recycles brain-derived neurotrophic factor for LTP stabilization and memory retention. Neuron 92:873–887

    Article  CAS  PubMed  Google Scholar 

  • Witcher MR, Kirov SA, Harris KM (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55:13–23

    Article  PubMed  Google Scholar 

  • Won CL, Oh YS (2000) cAMP-induced stellation in primary astrocyte cultures with regional heterogeneity. Brain Res 887:250–258

    Article  CAS  PubMed  Google Scholar 

  • Wray NH, Schappi JM, Singh H, Senese NB, Rasenick MM (2019) NMDAR-independent, cAMP-dependent antidepressant actions of ketamine. Mol Psychiatry 24(12):1833–1843

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, Hu H (2018) Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554:317–322

    Article  CAS  PubMed  Google Scholar 

  • Zanos P, Gould TD (2018) Mechanisms of ketamine action as an antidepressant. Mol Psychiatry 23:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Li B, Lovatt D, Xu J, Song D, Goldman SA, Nedergaard M, Hertz L, Peng L (2010) 5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional “serotonin-specific reuptake inhibitors”. Neuron Glia Biol 6:113–125

    Article  PubMed  Google Scholar 

  • Zhang Y, Wu S, Xie L, Yu S, Zhang L, Liu C, Zhou W, Yu T (2019) Ketamine within clinically effective range inhibits glutamate transmission from astrocytes to neurons and disrupts synchronization of astrocytic SICs. Front Cell Neurosci 13:240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorec R, Horvat A, Vardjan N, Verkhratsky A (2015) Memory formation shaped by astroglia. Front Integr Neurosci 9:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Zorec R, Verkhratsky A, Rodriguez JJ, Parpura V (2016) Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 323:67–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Slovenian Research Agency (research core funding P3-310) and projects J3 6790, J3 6789, J3 7605 and J3 9266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Zorec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stenovec, M., Li, B., Verkhratsky, A., Zorec, R. (2021). Ketamine Action on Astrocytes Provides New Insights into Rapid Antidepressant Mechanisms. In: Li, B., Parpura, V., Verkhratsky, A., Scuderi, C. (eds) Astrocytes in Psychiatric Disorders. Advances in Neurobiology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-77375-5_14

Download citation

Publish with us

Policies and ethics