Skip to main content

Neuroglia in Psychiatric Disorders

  • Chapter
  • First Online:
Astrocytes in Psychiatric Disorders

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 26))

Abstract

In the twentieth century, neuropsychiatric disorders have been perceived solely from a neurone-centric point of view, which considers neurones as the key cellular elements of pathological processes. This dogma has been challenged thanks to the better comprehension of the brain functioning, which, even if far from being complete, has revealed the complexity of interactions that exist between neurones and neuroglia. Glial cells represent a highly heterogeneous population of cells of neural (astroglia and oligodendroglia) and non-neural (microglia) origin populating the central nervous system. The variety of glia reflects the innumerable functions that glial cells perform to support functions of the nervous system. Aberrant execution of glial functions contributes to the development of neuropsychiatric pathologies. Arguably, all types of glial cells are implicated in the neuropathology; however, astrocytes have received particular attention in recent years because of their pleiotropic functions that make them decisive in maintaining cerebral homeostasis. This chapter describes the multiple roles of astrocytes in the healthy central nervous system and discusses the diversity of astroglial responses in neuropsychiatric disorders suggesting that targeting astrocytes may represent an effective therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    CAS  PubMed  Google Scholar 

  • Aida T, Yoshida J, Nomura M, Tanimura A, Iino Y, Soma M, Bai N, Ito Y, Cui W, Aizawa H, Yanagisawa M, Nagai T, Takata N, Tanaka KF, Takayanagi R, Kano M, Götz M, Hirase H, Tanaka K (2015) Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology 2015(40):1569–7159

    Google Scholar 

  • Alexandra IM, Constanze D, Klaus-Armin N (2018) An emerging role of dysfunctional axon-oligodendrocyte coupling in neurodegenerative diseases. Dialogues Clin Neurosci 20:283–292

    Google Scholar 

  • Almeida RG, Lyons DA (2017) On myelinated axon plasticity and neuronal circuit formation and function. J Neurosci 37:10023–10034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayata P, Badimon A, Strasburger HJ et al (2018) Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci 21:1049–1060. https://doi.org/10.1038/s41593-018-0192-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azim K, Angonin D, Marcy G, Pieropan F, Rivera A, Donega V, Cantu C, Williams G, Berninger B, Butt AM, Raineteau O (2017) Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity. PLoS Biol 15:e2000698

    PubMed  PubMed Central  Google Scholar 

  • Bear MF, Connors BW, Paradiso MA (2007) Exploring the brain. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Bedner P, Dupper A, Huttmann K, Muller J, Herde MK, Dublin P, Deshpande T, Schramm J, Haussler U, Haas CA, Henneberger C, Theis M, Steinhauser C (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138:1208–1222

    PubMed  PubMed Central  Google Scholar 

  • Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191

    CAS  PubMed  Google Scholar 

  • Bergles DE, Richardson WD (2015) Oligodendrocyte development and plasticity. Cold Spring Harb Perspect Biol 8(2):a020453. https://doi.org/10.1101/cshperspect.a020453

    Article  PubMed  Google Scholar 

  • Bronzuoli MR, Facchinetti R, Ingrassia D, Sarvadio M, Schiavi S, Steardo L, Verkhratsky A, Trezza V, Scuderi C (2018a) Neuroglia in the autistic brain: evidence from a preclinical model. Mol Autism 9:66. https://doi.org/10.1186/s13229-018-0254-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronzuoli MR, Facchinetti R, Steardo L Jr, Romano A, Stecca C, Passarella S, Steardo L, Cassano T, Scuderi C (2018b) Palmitoylethanolamide dampens reactive astrogliosis and improves neuronal trophic support in a triple transgenic model of Alzheimer’s disease: in vitro and in vivo evidence. Oxid Med Cell Longev 16:4720532. https://doi.org/10.1155/2018/4720532

    Article  CAS  Google Scholar 

  • Butt AM, Ransom BR (1989) Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia 2:470–475

    CAS  PubMed  Google Scholar 

  • Butt AM, Papanikolaou M, Rivera A (2019) Physiology of oligodendroglia. In: Verkhratsky A, Ho M, Zorec R, Parpura V (eds) Neuroglia in neurodegenerative diseases. Advances in experimental medicine and biology, vol 1175. Springer, Singapore. https://doi.org/10.1007/978-981-13-9913-8_5

    Chapter  Google Scholar 

  • Cartier N, Lewis C-A, Zhang R, Rossi FMV (2014) The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol 128:363–380. https://doi.org/10.1007/s00401-014-1330-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo JA (2018) Interlaminar glia and other glial themes revisited: pending answers following three decades of glial research. Neuroglia 1:7–20

    Google Scholar 

  • Cunningham CL, Martínez-Cerdeño V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33:4216–4233. https://doi.org/10.1523/JNEUROSCI.3441-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czeh B, Nagy SA (2018) Clinical findings documenting cellular and molecular abnormalities of glia in depressive disorders. Front Mol Neurosci 11:56

    PubMed  PubMed Central  Google Scholar 

  • Dare E, Schulte G, Karovic O, Hammarberg C, Fredholm BB (2007) Modulation of glial cell functions by adenosine receptors. Physiol Behav 92:15–20

    CAS  PubMed  Google Scholar 

  • das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F (2020) Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 69(6):1341–1368. https://doi.org/10.1002/glia.23940

    Article  PubMed  Google Scholar 

  • Davies DL, Cox WE (1991) Delayed growth and maturation of astrocytic cultures following exposure to ethanol: electron microscopic observations. Brain Res 547:53–61

    CAS  PubMed  Google Scholar 

  • Deitmer JW, Rose CR (1996) pH regulation and proton signalling by glial cells. Prog Neurobiol 48:73–103

    CAS  PubMed  Google Scholar 

  • Elbaz B, Popko B (2019) Molecular control of oligodendrocyte development. Trends Neurosci 42:263–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhauser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Luis Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen W-T, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai K, Norris CM, Okada S, SHR O, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein J, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner I-B, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A (2021) Working consensus on reactive astrocyte nomenclature, definitions and future directions. Nat Neurosci 24(3):312–325. https://doi.org/10.1038/s41593-020-00783-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer I (2018) Astrogliopathy in tauopathies. Neuroglia 1:126–150

    Google Scholar 

  • Franke H, Grosche J, Schadlich H, Krugel U, Allgaier C, Illes P (2001) P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108:421–429

    CAS  PubMed  Google Scholar 

  • Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–230

    PubMed  Google Scholar 

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    PubMed  PubMed Central  Google Scholar 

  • Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99

    CAS  PubMed  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham AJ, Ray MA, Perry EK, Jaros E, Perry RH, Volsen SG, Bose S, Evans N, Lindstrom J, Court JA (2003) Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J Chem Neuroanat 25:97–113

    CAS  PubMed  Google Scholar 

  • Griemsmann S, Hoft SP, Bedner P, Zhang J, von Staden E, Beinhauer A, Degen J, Dublin P, Cope DW, Richter N, Crunelli V, Jabs R, Willecke K, Theis M, Seifert G, Kettenmann H, Steinhauser C (2015) Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells. Cereb Cortex 25:3420–3433

    PubMed  Google Scholar 

  • Grubisic V, Verkhratsky A, Zorec R, Parpura V (2018) Enteric glia regulate gut motility in health and disease. Brain Res Bull 136:109–117

    PubMed  Google Scholar 

  • Guerri C, Renau-Piqueras J (1997) Alcohol, astroglia, and brain development. Mol Neurobiol 15:65–81

    CAS  PubMed  Google Scholar 

  • Habermacher C, Angulo MC, Benamer N (2019) Glutamate versus GABA in neuron-oligodendroglia communication. Glia 67(11):2092–2106. https://doi.org/10.1002/glia.23618

    Article  PubMed  Google Scholar 

  • Halestrap AP (2012) The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64:1–9

    CAS  PubMed  Google Scholar 

  • Hanani M, Verkhratsky A (2021) Satellite glial cells and astrocytes, a comparative review. Neurochem Res:1–13. https://doi.org/10.1007/s11064-021-03255-8

  • Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211

    CAS  PubMed  Google Scholar 

  • Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428

    CAS  PubMed  Google Scholar 

  • Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca2+]i. Neurochem Int 57:411–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hertz L, Song D, Xu J, Peng L, Gibbs ME (2015) Role of the astrocytic Na+, K+-ATPase in K+ homeostasis in brain: K+ uptake, signaling pathways and substrate utilization. Neurochem Res 40:2505–2516

    CAS  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H (2009) Are there ten times more glia than neurons in the brain? Brain Struct Funct 213:365–366

    PubMed  Google Scholar 

  • Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130

    CAS  PubMed  Google Scholar 

  • Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28:5207–5217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGrawhill, New York

    Google Scholar 

  • Kane CJ, Berry A, Boop FA, Davies DL (1996) Proliferation of astroglia from the adult human cerebrum is inhibited by ethanol in vitro. Brain Res 731:39–44

    CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    CAS  PubMed  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    CAS  PubMed  Google Scholar 

  • Kettenmann H, Zorec R (2013) Release of gliotransmitters and transmitter receptors in astrocytes. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 197–211

    Google Scholar 

  • Kidd GJ, Ohno N, Trapp BD (2013) Biology of Schwann cells. Handb Clin Neurol 115:55–79

    PubMed  Google Scholar 

  • Kiray H, Lindsay SL, Hosseinzadeh S, Barnett SC (2016) The multifaceted role of astrocytes in regulating myelination. Exp Neurol 283:541–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhoff F, Mulhardt C, Pastor A, Becker CM, Kettenmann H (1996) Expression of glycine receptor subunits in glial cells of the rat spinal cord. J Neurochem 66:1383–1390

    CAS  PubMed  Google Scholar 

  • Kirischuk S, Kettenmann H, Verkhratsky A (2007) Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflugers Arch 454:245–252

    CAS  PubMed  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056

    CAS  PubMed  Google Scholar 

  • Korbo L (1999) Glial cell loss in the hippocampus of alcoholics. Alcohol Clin Exp Res 23:164–168

    CAS  PubMed  Google Scholar 

  • Kuhn S, Gritti L, Crooks D, Dombrowski Y (2019) Oligodendrocytes in development, myelin generation and beyond. Cells 8(11):1424

    CAS  PubMed Central  Google Scholar 

  • Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanciotti A, Brignone MS, Bertini E, Petrucci TC, Aloisi F, Ambrosini E (2013) Astrocytes: emerging stars in leukodystrophy pathogenesis. Transl Neurosci 4(2):144–164

    Google Scholar 

  • Larson VA, Zhang Y, Bergles DE (2016) Electrophysiological properties of NG2 + cells: matching physiological studies with gene expression profiles. Brain Res 1638:138–160

    CAS  PubMed  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Stahlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468–481

    PubMed  Google Scholar 

  • MacVicar BA, Tse FW, Crichton SA, Kettenmann H (1989) GABA-activated Cl channels in astrocytes of hippocampal slices. J Neurosci 9:3577–3583

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346:318–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE (2012) Alexander disease. J Neurosci 32:5017–5023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer N, Richter N, Fan Z, Siemonsmeier G, Pivneva T, Jordan P, Steinhauser C, Semtner M, Nolte C, Kettenmann H (2018) Oligodendrocytes in the mouse corpus callosum maintain axonal function by delivery of glucose. Cell Rep 22:2383–2394

    CAS  PubMed  Google Scholar 

  • Micu I, Plemel JR, Caprariello AV, Nave KA, Stys PK (2018) Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nat Rev Neurosci 19:49–58

    CAS  PubMed  Google Scholar 

  • Miguel-Hidalgo JJ (2009) The role of glial cells in drug abuse. Curr Drug Abuse Rev 2:76–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miguel-Hidalgo JJ, Rajkowska G (2003) Comparison of prefrontal cell pathology between depression and alcohol dependence. J Psychiatr Res 37:411–420

    PubMed  PubMed Central  Google Scholar 

  • Miyazaki I, Asanuma M, Diaz-Corrales FJ, Miyoshi K, Ogawa N (2004) Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Res 1029:120–123

    CAS  PubMed  Google Scholar 

  • Monier A, Adle-Biassette H, Delezoide A-L et al (2007) Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 66:372–382. https://doi.org/10.1097/nen.0b013e3180517b46

    Article  PubMed  Google Scholar 

  • Muller C, Bauer NM, Schafer I, White R (2013) Making myelin basic protein -from mRNA transport to localized translation. Front Cell Neurosci 7:169

    PubMed  PubMed Central  Google Scholar 

  • Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57:883–893

    CAS  PubMed  Google Scholar 

  • Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68:113–126

    CAS  PubMed  Google Scholar 

  • Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. https://doi.org/10.1146/annurev-immunol-032713-120240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson M, Eriksson PS, Ronnback L, Hansson E (1993) GABA induces Ca2+ transients in astrocytes. Neuroscience 54:605–614

    CAS  PubMed  Google Scholar 

  • Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    CAS  PubMed  Google Scholar 

  • Ortiz FC, Habermacher C, Graciarena M, Houry PY, Nishiyama A, Oumesmar BN, Angulo MC (2019) Neuronal activity in vivo enhances functional myelin repair. JCI Insight 5(9):e123434. https://doi.org/10.1172/jci.insight.123434

    Article  Google Scholar 

  • Parpura V, Verkhratsky A (2012) Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept. ASN Neuro4:201–205. https://doi.org/10.1042/AN20120019

  • Pastor A, Chvatal A, Sykova E, Kettenmann H (1995) Glycine- and GABA-activated currents in identified glial cells of the developing rat spinal cord slice. Eur J Neurosci 7:1188–1198

    CAS  PubMed  Google Scholar 

  • Pastor A, Kremer M, Moller T, Kettenmann H, Dermietzel R (1998) Dye coupling between spinal cord oligodendrocytes: differences in coupling efficiency between gray and white matter. Glia 24:108–120

    CAS  PubMed  Google Scholar 

  • Patel JR, Klein RS (2011) Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett 585:3730–3737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisen J (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145:503–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38

    CAS  PubMed  Google Scholar 

  • Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345

    CAS  PubMed  Google Scholar 

  • Pfrieger FW (2010) Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 63:39–46

    CAS  PubMed  Google Scholar 

  • Pilitsis JG, Kimelberg HK (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Res 798:294–303

    CAS  PubMed  Google Scholar 

  • Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227–1235. https://doi.org/10.1038/nn.2923

    Article  CAS  PubMed  Google Scholar 

  • Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. https://doi.org/10.1038/nrn3722

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C (2002) Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 57:127–138

    PubMed  Google Scholar 

  • Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribak CE, Tong WM, Brecha NC (1996) GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 367:595–606

    CAS  PubMed  Google Scholar 

  • Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011) Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci U S A 108:18442–18446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruitenberg MJ, Vukovic J, Sarich J, Busfield SJ, Plant GW (2006) Olfactory ensheathing cells: characteristics, genetic engineering, and therapeutic potential. J Neurotrauma 23:468–478

    PubMed  Google Scholar 

  • Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Mobius W, Goetze B, Jahn HM, Huang W, Steffens H, Schomburg ED, Perez-Samartin A, Perez-Cerda F, Bakhtiari D, Matute C, Lowel S, Griesinger C, Hirrlinger J, Kirchhoff F, Nave KA (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:119–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saher G, Stumpf SK (2015) Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta 1851:1083–1094

    CAS  PubMed  Google Scholar 

  • Scalise M, Pochini L, Galluccio M, Indiveri C (2016) Glutamine transport. From energy supply to sensing and beyond. Biochim Biophys Acta 1857(8):1147–1157

    CAS  PubMed  Google Scholar 

  • Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: from immunity to behaviour. Curr Opin Neurobiol 21:5–10. https://doi.org/10.1016/j.conb.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  • Scuderi C, Bronzuoli MR, Facchinetti R, Pace L, Ferraro L, Broad KD, Serviddio G, Bellanti F, Palombelli G, Carpinelli G, Canese R, Gaetani S, Steardo L Jr, Steardo L, Cassano T (2018) Ultramicronized palmitoylethanolamide rescues learning and memory impairments in a triple transgenic mouse model of Alzheimer’s disease by exerting anti-inflammatory and neuroprotective effects. Transl Psychiatry 8(1):32. https://doi.org/10.1038/s41398-017-0076-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scuderi C, Verkhratsky A (2020) The role of neuroglia in autism spectrum disorders. Prog Mol Biol Transl Sci 173:301–330. https://doi.org/10.1016/bs.pmbts.2020.04.011

    Article  CAS  PubMed  Google Scholar 

  • Sellner S, Paricio-Montesinos R, Spieß A et al (2016) Microglial CX3CR128 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathol Commun 4:102. https://doi.org/10.1186/s40478-016-0374-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A 98:4148–4153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 74:555–563

    CAS  PubMed  Google Scholar 

  • Shigemoto-Mogami Y, Hoshikawa K, Goldman JE et al (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34:2231–2243. https://doi.org/10.1523/JNEUROSCI.1619-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra A, Encinas JM, Deudero JJP et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495. https://doi.org/10.1016/j.stem.2010.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV (2014) Astrogliosis. Cold Spring Harb Perspect Biol 7:a020420

    PubMed  Google Scholar 

  • Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339:197–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swinnen N, Smolders S, Avila A et al (2013) Complex invasion pattern of the cerebral cortex by microglial cells during development of the mouse embryo. Glia 61:150–163. https://doi.org/10.1002/glia.22421

    Article  PubMed  Google Scholar 

  • Tang G, Xu Z, Goldman JE (2006) Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. J Biol Chem 281:38634–38643

    CAS  PubMed  Google Scholar 

  • Tay TL, Savage JC, Hui CW et al (2017) Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J Physiol (Lond) 595:1929–1945. https://doi.org/10.1113/JP272134

    Article  CAS  Google Scholar 

  • Tay TL, Béchade C, D’Andrea I et al (2018) Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front Mol Neurosci 10:421. https://doi.org/10.3389/fnmol.2017.00421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tay TL, Carrier M, Tremblay MÈ (2019) Physiology of microglia. In: Verkhratsky A, Ho M, Zorec R, Parpura V (eds) Neuroglia in neurodegenerative diseases. Advances in experimental medicine and biology, vol 1175. Springer, Singapore. https://doi.org/10.1007/978-981-13-9913-8_6

    Chapter  Google Scholar 

  • Ueno M, Fujita Y, Tanaka T et al (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551. https://doi.org/10.1038/nn.3358

    Article  CAS  PubMed  Google Scholar 

  • Vejar S, Oyarzun JE, Retamal MA, Ortiz FC, Orellana JA (2019) Connexin and pannexin-based channels in oligodendrocytes: implications in brain health and disease. Front Cell Neurosci 13:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A (2010) Physiology of neuronal-glial networking. Neurochem Int 57:332–343

    CAS  PubMed  Google Scholar 

  • Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester, p 560

    Google Scholar 

  • Verkhratsky A, Chvatal A (2020) NMDA receptors in astrocytes. Neurochem Res 45:122–133

    CAS  PubMed  Google Scholar 

  • Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    CAS  PubMed  Google Scholar 

  • Verkhratsky A, Rodriguez JJ, Steardo L (2014) Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 20:576–588

    PubMed  Google Scholar 

  • Verkhratsky A, Parpura V (2015) Physiology of astroglia: channels, receptors, transporters, ion signaling and gliotransmission. Morgan & Claypool Publishers, p 172

    Google Scholar 

  • Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35(3):239–257. https://doi.org/10.15252/embj.201592705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Zorec R, Parpura V (2017a) Stratification of astrocytes in healthy and diseased brain. Brain Pathol 27:629–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V (2017b) Neuroglia: functional paralysis and reactivity in Alzheimer’s disease and other neurodegenerative pathologies. Adv Neurobiol 15:427–449

    PubMed  Google Scholar 

  • Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389

    CAS  PubMed  Google Scholar 

  • Verkhratsky A, Rose CR (2020) Na+-dependent transporters: the backbone of astroglial homeostatic function. Cell Calcium 85:102136

    CAS  PubMed  Google Scholar 

  • Verkhratsky A, Oberheim Bush NA, Nedergaard M, Butt AM (2018) The special case of human astrocytes. Neuroglia 1:21–29

    Google Scholar 

  • Verkhratsky A, Ho MS, Zorec R, Parpura V (2019) The concept of neuroglia. In: Verkhratsky A, Ho M, Zorec R, Parpura V (eds) Neuroglia in neurodegenerative diseases. Advances in experimental medicine and biology, vol 1175. Springer, Singapore

    Google Scholar 

  • Verney C, Monier A, Fallet-Bianco C, Gressens P (2010) Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 217:436–448. https://doi.org/10.1111/j.1469-7580.2010.01245.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Virchow R (1860) Cellular pathology. Robert M de Witt, New York

    Google Scholar 

  • von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524:3865–3895

    Google Scholar 

  • Voskuhl RR, Itoh N, Tassoni A, Matsukawa MA, Ren E, Tse V, Jang E, Suen TT, Itoh Y (2019) Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc Natl Acad Sci U S A 116:10130–10139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinhard L, d’Errico P, Tay TL (2018) Headmasters: microglial regulation of learning and memory in health and disease. Molecular 5:63–89. https://doi.org/10.3934/molsci.2018.1.63

    Article  CAS  Google Scholar 

  • Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD, Emery B, Li H, Richardson WD (2016) Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci 19:1210–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zafra F, Aragon C, Olivares L, Danbolt NC, Gimenez C, Storm-Mathisen J (1995) Glycine transporters are differentially expressed among CNS cells. J Neurosci 15:3952–3969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeidan-Chulia F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JC (2014) The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 38:160–172

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Giorgia Menegoni for her help in preparing the figures.

BL’s work is supported by the National Natural Science Foundation of China (grant number 8187185), LiaoNing Revitalization Talents Program (grant number XLYC1807137), the Scientific Research Foundation for Returned Scholars of Education Ministry of China (grant number 20151098), LiaoNing Thousand Talents Program (grant number 202078), and “ChunHui” Program of Education Ministry of China (grant number 2020703). CS’s work is supported by a grant from the Italian Ministry of Education, University and Research (2015KP7T2Y_002) and a grant from Sapienza University of Rome (RM11916B7A8D0225). VP’s work is supported by a grant from the National Institute of General Medical Sciences of the National Institutes of Health (R01GM123971). VP is an Honorary Professor at University of Rijeka, Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Scuderi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scuderi, C., Verkhratsky, A., Parpura, V., Li, B. (2021). Neuroglia in Psychiatric Disorders. In: Li, B., Parpura, V., Verkhratsky, A., Scuderi, C. (eds) Astrocytes in Psychiatric Disorders. Advances in Neurobiology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-77375-5_1

Download citation

Publish with us

Policies and ethics