Skip to main content

Battling Climate Change: Improving Crop Productivity and Quality by Increasing Photosynthetic Efficiency, Deploying Microbiome Metagenomics, and Effectively Utilizing Digital Technology

  • Chapter
  • First Online:
Climate Change and the Microbiome

Part of the book series: Soil Biology ((SOILBIOL,volume 63))

  • 1548 Accesses

Abstract

Change in normal environmental conditions is referred as climate change. The activities such as desertification, emissions of toxic gases from fossil fuel burning, increased livestock farming, use of nitrogenous fertilizers, and fluorinated gases are the main causes for global climate change. These activities release huge quantity of greenhouse gases into atmosphere in addition to those that produce naturally. The increased greenhouse gasses cause greenhouse effect and global warming. The temperature and rainfall are important factors from the point of agriculture and are affected due to climate change. The change in temperature and rainfall pattern affect crop growth and increase the chances of pests and diseases outbreak and finally the productivity. The effect of environmental change on agriculture is unevenly distributed across the world and if not addressed appropriately, it may increase the risk of food security in coming days. Increasing the agriculture productivity under changing climate is the need of the hour. Till date, only marginal efforts were made in enhancing the photosynthetic efficiency of crop plants. Biotechnological tools play significant part in improving the plant photosynthesis and the yield. Besides increasing crop’s intrinsic productivity, providing optimum biological environment to the crops is another logical combatting strategy to minimize any adverse effect of changed environment. Plant microbiome is the major component of the biological climate, which denotes the entire genetic makeup of microorganisms live on the soil and plant. The microbiome is unpredictably associated with plant wellbeing and helps in increasing the quality and productivity of crops. The beneficial microbes induce resistance to the plants against pest and diseases, play important role in nutrient recycling, nutrient mobilization. The metagenomic tools help in designing right microbiome to recover the plant and soil wellbeing. The application of digital technology in agriculture will enhance the precision and right prediction. The digital technology can be used to monitor the changing rainfall pattern, temperature, pest and disease outbreak, and databases can be developed for these. The machine learning (ML) algorithms and artificial neural network (ANN) can be used to analyze and process large-scale data. An artificial Intelligence (AI) platform developed by ML and ANN can help further decision making. These biological and digital solutions will bring revolution in the agriculture by increasing the productivity and by minimizing the crop losses. In this book chapter, we are discussing about the role of photosynthesis, microbiome, and digital technology in concern to changed environment and improving agriculture productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal PK, Mal RK (2002) Climate change and rice yields in diverse agro-environments of India. II. Effects of uncertainties in scenarios and crop models on impact assessment. Clim Chang 52:331–343

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538

    Article  CAS  PubMed  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03 Rome, FAO, 154

    Google Scholar 

  • Alexandros K, Eigenmann R, Teye F, Politopoulou Z, Wolfert S et al (2012) Farm management systems and the future internet era. Comput Electron Agric 89:130–144

    Article  Google Scholar 

  • Amthor JS, Baldocchi DD (2001) Terrestrial higher plant respiration and net primary production. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, CA, pp 33–59

    Chapter  Google Scholar 

  • Anne B (2010) The nitrogen cycle: processes, players and human impact. Nat Educ Knowl 3:25

    Google Scholar 

  • Aqeel-ur-Rehman Abbasi AZ, Islam N, Shaikh ZA (2014) A review of wireless sensors and networks’ applications in agriculture. Comp Stand Interf 36:263–270

    Article  Google Scholar 

  • Artificial intelligence helps make the world more food secure (2017) Queensland Alliance for Agriculture and Food Innovation

    Google Scholar 

  • Atamna-Ismaeel N, Finkel O, Glaser F, Von Mering C, Vorholt JA, Koblizek M et al (2012) Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environ Microbiol Rep 4:209–216

    Article  CAS  PubMed  Google Scholar 

  • Baas P (2018) Targeted manipulation of the plant microbiome to enhance crop health and yield

    Google Scholar 

  • Barrow JR, Lucero ME, Reyes-Vera I, Havstad K (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:69–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76:35–52

    Article  PubMed  Google Scholar 

  • Bauwe H, Haemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant sci 15:330–336

    Article  CAS  PubMed  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Reodenbeck C, Arain MA, Baldocchi D, Bonan GB et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Sci 329:834–838

    Article  CAS  Google Scholar 

  • Benson AA (2002) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73:29–49

    Article  CAS  PubMed  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, Berlin, pp 225–258

    Chapter  Google Scholar 

  • Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ 26:1419–1430

    Article  CAS  Google Scholar 

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  CAS  PubMed  Google Scholar 

  • Brayne S, McKellar S, Tzafestas K (2018) Artificial intelligence in the life sciences & patent analytics: market developments and intellectual property landscape. IP Pragmatics Ltd

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Brosius LS (2010) Investigating controls over methane production and bubbling from interior Alaskan lakes using stable isotopes and radiocarbon ages. University of Alaska, Fairbanks, AK.

    Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren Van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Charu G, Prakash D, Sneh G (2014) Role of microbes in combating global warming. Int J Pharm Sci Lett 4:359–363

    Google Scholar 

  • Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–431

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Guestrin C (2016). XGBoost: a scalable tree boosting system. ACM, pp 785–794

    Google Scholar 

  • Chhabra S, Brazil D, Morrissey J, Burke JI, O’Gara F, Dowling ND (2013) Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiol Open 2:717–724

    Article  CAS  Google Scholar 

  • Committee on Metagenomics: Challenges and Functional Applications, National Research Council (2007) The new science of metagenomics: revealing the secrets of our microbial planet. The National Academies Press, Washington, DC, USA. http://www.nap.edu/openbook.php?record_id=11902

  • Cretoiu MS, Kielak AM, Abu Al-Soud W, Sorensen SJ, Van Elsas JD (2012) Mining of unexplored habitats for novel chitinases - chiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol 94:1347–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, van Diepen LTA, Bradford MA (2015) Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci 112:7033–7038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daemrich A, Reinhardt F, Shelman M (2008) Arcadia biosciences: seeds of change. Harvard Business School, Boston, MA

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Dengel A (2013) Special issue on artificial intelligence in agriculture. KI 27:309–311

    Google Scholar 

  • Denton AK, Simon R, Weber APMK (2013) C4 photosynthesis: from evolutionary analyses to strategies for synthetic reconstruction of the trait. Curr Opin Plant Biol 16:315–321

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature high stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Andrew JC, Moore AL, Vajzovic A, Singleton GL, Ma CP, Khan Z, Xin G, Kang JW, Park JY, Meilan R, Strauss SH, Wilkerson J, Farin F, Strand SE (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci 104(43):16816–16821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drucker H, Burges CJ, Kaufman L, Smola AJ, Vapnik V (1997) Support vector regression machines, pp 155–161

    Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  CAS  PubMed  Google Scholar 

  • Emamgholizadeh S, Shahsavani S, Eslami MA (2017) Comparison of artificial neural networks, geographically weighted regression and Cokriging methods for predicting the spatial distribution of soil macronutrients (N, P, and K). Chin Geogr Sci 27(5):747–759

    Article  Google Scholar 

  • Fahimi F, El-Shafie AH (2015) Application of self-organizing maps (SOMS) method to rainfall stations clustering in multisite regions. Intern J Adv Mech Civ Eng 2:33–37

    Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • FAO Agriculture Series (2002) The state of food and agriculture. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • FAO Agriculture Series (2013) The state of food and agriculture. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • FAO Agriculture Series (2017) The state of food and agriculture. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT (2011) Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J Exp Bot 62:3103–3108

    Article  CAS  PubMed  Google Scholar 

  • Furuya J, Kobayashi S (2010) Impact of global warming on agriculture product markets, chapter 2. In: Sumi A, Fukushi K, Hiramatsu A (eds) Adaptation and mitigation strategies for climate change. Springer, Tokyo

    Google Scholar 

  • Gale WJ, Cambardella CA, Bailey TB (2000) Root-derived carbon and the formation and stabilization of aggregates. Soil Sci Soc Am J 64:201–207

    Article  CAS  Google Scholar 

  • Geoffrey Craggs JP (2016) Photosynthesis and its role in climate change and soil regeneration. Strategic Analysis Paper. Future Directions International

    Google Scholar 

  • Ghannoum O, Evans JR, von Caemmerer S (2011) Nitrogen and water use efficiency of C4 plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Dordrecht, The Netherlands, pp 129–146

    Google Scholar 

  • Gowik U, Westhoff P (2011) The path from C3 to C4 photosynthesis. Plant Physiol 155:56–63

    Article  CAS  PubMed  Google Scholar 

  • Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085

    Article  CAS  Google Scholar 

  • Groffman P (2012) Terrestrial denitrification: challenges and opportunities. Ecol Proc 1:1–11

    Google Scholar 

  • Hastie TJ (2017) Generalized additive models, pp 249–307

    Google Scholar 

  • Heckmann D, Schluter U, Weber APM (2017) Machine learning techniques for predicting crop photosynthetic capacity from leaf reflectance spectra. Mol Plant 10:878–890

    Article  CAS  PubMed  Google Scholar 

  • Helen AA, Bolanle AO, Samuel OF (2016) Comparative analysis of rainfall prediction models using neural network and fuzzy logic. Intern J Soft Comput Eng 5(6)

    Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11:228–231

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann U (2013) Wake up before it is too late: make agriculture truly sustainable now for food security in a changing climate. UNCTAD, UN

    Google Scholar 

  • Hoover JK, Newman JA (2004) Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Glob Chang Biol 10:1197–1208

    Article  Google Scholar 

  • Horz HP, Raghubanshi AS, Heyer J, Kammann C, Conrad R, Dunfield PF (2002) Activity and community structure of methane-oxidising bacteria in a wet meadow soil. FEMS Microbiol Ecol 41:247–257

    Article  CAS  PubMed  Google Scholar 

  • http://earthobservatory.nasa.gov/Features/GlobalWarming/page2.php

  • http://www.epa.gov/methane

  • https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/methane-oxidizing-and-producing-bacteria. Methane oxidizing and producing bacteria. World of Microbiology and Immunology. Encyclopedia.com. 11 Mar 2019

  • Huber-Humer M, Lechner P, Gortler N (2008) Impact of different biocover designs on methane mitigation. In: Pawlowska M, Pawlowski L (eds) Management of pollutant emission from landfills and sludge. Routledge, New York, pp 21–36

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon SD et al (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC Climate Change (2007) Synthesis report. Summary for policymakers. http://www.ipcc.ch. Accessed November 2007

  • IPCC SRES (2000) Nakicenovic N, Swart R (eds) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaneda TB (2016) World population data sheet. Population Reference Bureau. www.prb.org, p 22

  • Kaur K (2016) Machine learning: applications in Indian agriculture. Intern J Adv Res Comput and Commun Eng 5:342–344

    Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H et al (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  PubMed  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Kolhe S, Kamal R, Saini HS, Gupta GK (2011) A web-based intelligent disease-diagnosis system using a new fuzzy-logic based approach for drawing the inferences in crops. Comput Electron Agric 76:16–27

    Article  Google Scholar 

  • Kolhe S, Gupta GK (2014) Intelligent systems for agriculture domain. Intern J Comput Appl:14–18

    Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Article  Google Scholar 

  • Kusar D, Avgustin G (2010) Molecular profiling and identification of methanogenic archaeal species from rabbit caecum. FEMS Microbiol Ecol 74:1–8

    Article  CAS  Google Scholar 

  • Le Quere C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  CAS  Google Scholar 

  • Le Quere C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA et al (2016) Global carbon budget. Earth Syst Sci Data 8:605–649

    Article  Google Scholar 

  • Lelieveld J, Crutzen PJ, Bruhl C (1993) Climate effects of atmospheric methane. Chemosphere 26:739–768

    Article  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Lorenzoni I, Nicholson-Cole S, Whitmarsh L (2007) Barriers perceived to engaging with Climate Change among the UK public and their policy implications. Glob Environ Change 17:445–459

    Article  Google Scholar 

  • Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309:1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Lucero ME, Unc A, Cooke P, Dowd S, Sun S (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS One 6:e17693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mackelprang R, Waldrop MP, Deangelis KM, David MM, Chavarria KL, Blazewicz SJ et al (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371

    Article  CAS  PubMed  Google Scholar 

  • Mauney JR, Lewin KF, Hendrey GR, Kimball BA (1992) Growth and yield of cotton expose to free-air CO2 enrichment. Crit Rev Plant Sci 11:213–222

    CAS  Google Scholar 

  • Maurino VG, Weber APM (2013) Engineering photosynthesis in plants and synthetic microorganisms. J Exp Bot 64:743–751

    Article  CAS  PubMed  Google Scholar 

  • Microbiology Online (2015) Microbes and climate change. http://www.microbiologyonline.org.uk/aboutmicrobiology/microbes and climate change. Accessed 19 June 2020

  • Milius S (2017) Worries grow that climate change will quietly steal nutrients from major food crops. Sci News

    Google Scholar 

  • Mislan H, Hardwinarto S, Sumaryono, Aipassa M (2015) Rainfall monthly prediction based on artificial neural network: a case study in Tenggarong Station, East Kalimantan Indonesia. Procedia Comput Sci 59:142–151

    Article  Google Scholar 

  • Mitter B, Pfaffenbichler N, Flavell R et al (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Moser SC, Dilling L (2004) Making climate hot: communicating the urgency and challenge of climate change. Environ Sci Policy Sustain Dev 46:32–46

    Article  Google Scholar 

  • Muller-Stover D, Hauggard-Nielsen H, Eriksen J, Ambus P, Johansen A (2012) Microbial biomass, microbial diversity, soil carbon storage, and stability after incubation of soil from grass clover pastures of different age. Biol Fertil Soils 48:371–383

    Article  CAS  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    Article  CAS  PubMed  Google Scholar 

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324:7–14

    Article  PubMed  Google Scholar 

  • Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol 18:365–373

    Article  CAS  PubMed  Google Scholar 

  • NSF Funding Opportunity Document (2005) Microb Genome Sequencing Program

    Google Scholar 

  • Ogren WL (2003) Affixing the O to rubisco: discovering the source of photo respiratory glycolate and its regulation. Photosynth Res 76:53–63

    Article  CAS  PubMed  Google Scholar 

  • Olufemi A, Reuben O, Olufemi O (2014) Global climate change. J Geosci Environ Protect 2:114–122

    Article  Google Scholar 

  • Orr CH, James A, Leifert C, Cooper JM, Cummings SP (2011) Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Environ Microbiol 77:911–919

    Article  CAS  PubMed  Google Scholar 

  • Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85

    Article  CAS  PubMed  Google Scholar 

  • Ottesen AR, Pena AG, White JR, Pettengill JB, Li C, Allard S et al (2013) Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol 13:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730

    Article  CAS  PubMed  Google Scholar 

  • Perez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Hallin S (2011) Towards food, feed and energy crops mitigating climate change. Trends Plant Sci 16:476–480

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Pengelly JJL, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64:753–768

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI (2007) Microorganisms cycling soil nutrients and their diversity. In: Modern soil microbiology. CRC Press, Boca Raton, FL, pp 237–261

    Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2012) Effects of temperature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seedlings. Environ Exp Bot 75:107–113

    Article  CAS  Google Scholar 

  • Qiancheng M (1998) Greenhouse gases: refining the role of carbon dioxide, NASA Science Briefs

    Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    Article  CAS  PubMed  Google Scholar 

  • Rajput P, Saxena R, Mishra G, Mohanty SR, Tiwari A (2013) Biogeochemical aspect of atmospheric methane and impact of nanoparticles on methanotrophs. J Environ Anal Toxicol 3:2–10

    Google Scholar 

  • Rakestraw R, Acharya A (2017) Can artificial intelligence help feed the world? The mix bowl

    Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28(9):897–906

    Article  Google Scholar 

  • Robinson CA, Cruse RM, Ghaffarzadeh M (1996) Cropping system and nitrogen effects on mollisol organic carbon. Soil Sci Soc Am J 60:264–269

    Article  CAS  Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 1917–1919

    Google Scholar 

  • Roy A, Kant A (2018) National stratergy for artificial intelligence. Discussion Paper on Nation Strat Artific Intellig

    Google Scholar 

  • Sage RF (2002) Variation in the k (cat) of rubisco in C-3 and C-4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620

    Article  CAS  PubMed  Google Scholar 

  • Sage RF (2014) Photosynthetic efficiency and carbon concentration in terrestrial plants: the C4 and CAM solutions. J Exp Bot 65:3323–3325

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Sanford RA, Wagner DD, Cu QW, Chee-Sanford J, Thomas SH et al (2012) Unexpected non-denitrifier nitrous oxide reductase gene. Proc Natl Acad Sci U S A 109:19709–19714. https://doi.org/10.1073/pnas.1211238109

    Article  PubMed  PubMed Central  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seed-borne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Scholz MB, Lo CC, Chain PSG (2012) Next-generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 23:9–15

    Article  CAS  PubMed  Google Scholar 

  • Scoggins G (2018) Benson Hill and Beck’s announce the first photosynthetic efficiency trait. NUU Digest 2018

    Google Scholar 

  • Semones S (2018) Application of microbial consortia to improve plant and soil health

    Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  PubMed  Google Scholar 

  • Sharpe RM, Offermann S (2014) One decade after the discovery of single-cell C4 species in terrestrial plants: what did we learn about the minimal requirement of C4 photosynthesis? Photosyn Res 119:169–180

    Article  CAS  Google Scholar 

  • Sheehy JE, Elmido AE, Centeno HGS, Pablico PP (2005) Searching for new plants for climate change. J Agric Meteorol 60:463–468

    Article  Google Scholar 

  • Shindell D, Kuylenstierna JCI, Elisabetta V, Rita VD et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–189

    Article  CAS  PubMed  Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Dave SR (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Skillman JB (2008) Quantum yield variation across the three pathways of photosynthesis: not yet out of the dark. J Exp Bot 59:1647–1661

    Article  CAS  PubMed  Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Chang Biol 19:45–63

    Article  PubMed  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  PubMed  Google Scholar 

  • Stanger TF, Lauer JG (2008) Corn grain yield response to crop rotation and nitrogen over 35 years. Agron J 100:643–650

    Article  CAS  Google Scholar 

  • Stanley CE, van der Heijden MGA (2017) Microbiome-on-a-Chip: new frontiers in plant-microbiota research. Trends Microbiol 25:610–613

    Article  CAS  PubMed  Google Scholar 

  • Stewart R (2003) Oceanography in the 21st century. Presentation given at the National Marine Educators Association Annual Meeting, Wilmington in North Carolina in July 2003

    Google Scholar 

  • Stone M, Hirsh H (2005) Artificial intelligence: the next twenty-five years. AI Mag 26(4). https://doi.org/10.1609/aimag.v26i4.1852

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–29

    Google Scholar 

  • Stringer R (2001) How important are the ‘non-traditional’ economic roles of agriculture in development? Centre for Social and Economic Progress

    Google Scholar 

  • Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007) Biological nitrification inhibition (BNI) – is it a widespread phenomenon? Plant Soil 294:5–18

    Article  CAS  Google Scholar 

  • Takakura T (1975) Maximizing plant growth using a small computer. Acta Hortic 46(147):156

    Google Scholar 

  • Takakura T, Ohara G (1976) Direct digital control of plant growth (II). J Agric Meteorol 32:107–115

    Article  Google Scholar 

  • Takakura T, Kozai T, Tachibana K, Jordan KA (1974) Direct digital control of plant growth (I). Trans ASAE 17:1150–1154

    Article  CAS  Google Scholar 

  • Takakura T, Ohara G, Nakamura Y (1978) Direct digital control of plant growth (III). Acta Hortic 78:257–264

    Article  Google Scholar 

  • Thauer RK (2012) The Wolfe cycle comes full circle. Proc Natl Acad Sci USA 109:15084–15085. https://doi.org/10.1073/pnas.1213193109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tkemaladze GS, Makhashvili KA (2016) Climate changes and photosynthesis. Ann Agrarian Sci 14:119–126

    Article  Google Scholar 

  • Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257

    Article  PubMed  Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems-recent progress and challenges. Glob Chang Biol 12:141–153

    Article  Google Scholar 

  • Tyagi S, Singh R, Javeria S (2014) Effect of climate change on plant-microbe interaction: an overview. Eur J Mol Biotechnol 5:149–156

    Article  CAS  Google Scholar 

  • Uemura K, Anwaruzzaman M, Miyachi S, Yokota A (1997) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Commun 233:568–571

    Article  CAS  PubMed  Google Scholar 

  • United Nations Framework Convention on Climate Change: Convention (1994) UNFCC, Article 1 - Paragraph 2

    Google Scholar 

  • Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ 28:120–127

    Article  PubMed  Google Scholar 

  • Uprety DC, Sen S, Dwivedi N (2010) Rising atmospheric carbon dioxide on grain quality in crop plants. Physiol Mol Biol Plants 16:215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkata Ramanan M, Smitha (2011) Causes and effects of global warming. Indian J Sci Technol 4:226–229

    Article  Google Scholar 

  • Villanueva MB, Salenga MLM (2018) Bitter melon crop yield prediction using machine learning algorithm. Intern J Adv Comput Sci Appl 9(3). https://doi.org/10.14569/IJACSA.2018.090301

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond Ser B Biol Sci 368:1–9

    Article  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wallenstein MD (2017) Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3:230–232

    Article  Google Scholar 

  • Wang J, Zhang X, Xiong Z, Khalil MA, Zhao X, Xie Y, Xing G (2012) Methane emissions from a rice agroecosystems in China: effects of water regime, straw incorporation and nitrogen fertilizer. Nutr Cycl Agroecosyst 93:103–112

    Article  CAS  Google Scholar 

  • Wang Y, Brautigam A, Weber AP, Zhu XG (2014) Three distinct biochemical subtypes of c4 photosynthesis? A modelling analysis. J Exp Bot 65:3567–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiman S (2015) Microbes help to drive global carbon cycling and climate change. Microbe Mag 10:233–238

    Article  Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, rubisco. Plant Physiol 155:27–35

    Article  CAS  PubMed  Google Scholar 

  • Wilke A, Bischof J, Gerlach W, Glass E, Harrison T, Keegan KP, Paczian T, Trimble WL, Bagchi S, Grama A, Chaterji S, Meyer F (2016) The MG-RAST metagenomics database and portal in 2015. Nucleic Acids Res 44

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1985) Leaf conductance in relation to rate of CO2 assimilation. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny. Plant Physiol 78:821–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yelapure SJ, Kulkarni RV (2012) Literature review on expert system in agriculture. Intern J Comput Sci Inf Technol 3:5086–5089

    Google Scholar 

  • Zhou J, Xue K, Jianping X, Deng Y, Wu L et al (2011) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Chang 2:106–110

    Article  CAS  Google Scholar 

  • Zhou Y, Song G, Wang M (2012) Wireless sensor network data fusion algorithm based on neural network in the area of agriculture. Sens Transducers J 16:128–136

    Google Scholar 

  • Zhu XG, Ort DR, Whitmarsh J, Long SP (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J Exp Bot 55:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Zhuang Q, Ciais P, Welp L, Li W, Xin Q (2017) Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback. Geophys Res Lett 44:1956–1963

    CAS  Google Scholar 

  • Zimmer C (2010) The microbe factor and its role in our climate future. Yale Environ

    Google Scholar 

  • Zimmerman L, Labonte B (2015) Climate change and the microbial methane banquet. Clim Alert 27(1). Accessed 15 Dec 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrashekharaiah, P.S., Kodgire, S., Sanyal, D., Dasgupta, S. (2021). Battling Climate Change: Improving Crop Productivity and Quality by Increasing Photosynthetic Efficiency, Deploying Microbiome Metagenomics, and Effectively Utilizing Digital Technology. In: Choudhary, D.K., Mishra, A., Varma, A. (eds) Climate Change and the Microbiome. Soil Biology, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-030-76863-8_33

Download citation

Publish with us

Policies and ethics