Skip to main content

Drug Resistance in Cancer

  • Chapter
  • First Online:
Biochemistry of Drug Resistance

Abstract

Cancer drug resistance is one of the obstacles in cancer treatment thus leading cause of death in cancer. Drug resistance in cancer means the evolution of tumor cells against therapeutic strategies. In each kind of resistance, every time there is a different pattern of resistivity. Two basic modes of resistance are found in the neoplastic cells that can be inherent or acquired. A large number of factors are influencing these two modes including mutations, efflux and influx variations, tumor cell heterogeneity, microenvironment of the cancer stem cells, microRNAs, long non-coding regions of RNAs, apoptotic failure, and many others. Evolution in tumor cells may be a result of increased ability of DNA repair, alteration in target molecules, involvement of kinase inhibitor, or topoisomerase inhibitors inactivity. It is the need of the hour to utilize other fields of science to avoid cancer drug resistance. Advanced knowledge of bioinformatics, genomics, proteomics, and nanotechnology is the way forward. Drugs with increased efficacy, decreased efflux pumps,high specificity, and targeted effects are required to be developed. Nanocarriers can play a role to avoid cancer drug resistance. Nano dosage of cancer drugs can prove more specific, lesstoxic, and can increase therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertson, D. G. (2006). Gene amplification in cancer. TRENDS in Genetics, 22, 447–455.

    Article  CAS  PubMed  Google Scholar 

  • Alitalo, K. & Schwab, M. 1986. Oncogene amplification in tumor cells. Advances in cancer research. Elsevier.

    Google Scholar 

  • Azmi, A. S., Bao, B., & Sarkar, F. H. (2013). Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer and Metastasis Reviews, 32, 623–642.

    Article  CAS  PubMed  Google Scholar 

  • Brito, D. A., & Rieder, C. L. (2009). The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. Cell Motility and the Cytoskeleton, 66, 437–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrell, R. A., & Swanton, C. (2014). Tumour heterogeneity and the evolution of polyclonal drug resistance. Molecular Oncology, 8, 1095–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Tian, W., Cai, H., He, H., & Deng, Y. (2012). Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Medical Oncology, 29, 2527–2534.

    Article  CAS  PubMed  Google Scholar 

  • Das, T., Roy, K. S., Chakrabarti, T., Mukhopadhyay, S., & Roychoudhury, S. (2014). Withaferin A modulates the Spindle Assembly Checkpoint by degradation of Mad2–Cdc20 complex in colorectal cancer cell lines. Biochemical Pharmacology, 91, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Davies, A. M., Ho, C., Lara, P. N., Jr., Mack, P., Gumerlock, P. H., & Gandara, D. R. (2006). Pharmacodynamic separation of epidermal growth factor receptor tyrosine kinase inhibitors and chemotherapy in non–small-cell lung cancer. Clinical Lung Cancer, 7, 385–388.

    Article  CAS  PubMed  Google Scholar 

  • Davis, J. M., Navolanic, P. M., Weinstein-Oppenheimer, C. R., Steelman, L. S., Hu, W., Konopleva, M., Blagosklonny, M. V., & Mccubrey, J. A. (2003). Raf-1 and Bcl-2 induce distinct and common pathways that contribute to breast cancer drug resistance. Clinical Cancer Research, 9, 1161–1170.

    CAS  PubMed  Google Scholar 

  • Dean, M. (2009). ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology and Neoplasia, 14, 3–9.

    Article  PubMed  Google Scholar 

  • Easwaran, H., Tsai, H.-C., & Baylin, S. B. (2014). Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Molecular Cell, 54, 716–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, S. L., Brough, R., Lord, C. J., Natrajan, R., Vatcheva, R., Levine, D. A., Boyd, J., Reis-filho, J. S., & Ashworth, A. (2008). Resistance to therapy caused by intragenic deletion in BRCA2. Nature, 451, 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  • Fukumori, T., Kanayama, H.-O., & Raz, A. (2007). The role of galectin-3 in cancer drug resistance. Drug Resistance Updates, 10, 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, Z., Zhang, L., & Sun, Y. (2012). Nanotechnology applied to overcome tumor drug resistance. Journal of Controlled Release, 162, 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Gariboldi, M. B., Ravizza, R., Riganti, L., Meschini, S., Calcabrini, A., Marra, M., Arancia, G., Dolfini, E., & Monti, E. (2003). Molecular determinants of intrinsic resistance to doxorubicin in human cancer cell lines. International Journal of Oncology, 22, 1057–1064.

    CAS  PubMed  Google Scholar 

  • Goldsmith, M. E., Gudas, J. M., Schneider, E., & Cowan, K. H. (1995). Wild type p53 stimulates expression from the human multidrug resistance promoter in a p53-negative cell line. Journal of Biological Chemistry, 270, 1894–1898.

    Article  CAS  PubMed  Google Scholar 

  • Gonen, N., & Assaraf, Y. G. (2012). Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance. Drug Resistance Updates, 15, 183–210.

    Article  CAS  PubMed  Google Scholar 

  • Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annual Review of Medicine, 53, 615–627.

    Article  CAS  PubMed  Google Scholar 

  • Hadfield, J. A., Ducki, S., Hirst, N., & Mcgown, A. T. (2003). Tubulin and microtubules as targets for anticancer drugs. Progress in Cell Cycle Research., 5, 309–326.

    PubMed  Google Scholar 

  • Hodgkinson, V. C., Eagle, G. L., Drew, P. J., Lind, M. J., & Cawkwell, L. (2010). Biomarkers of chemotherapy resistance in breast cancer identified by proteomics: current status. Cancer Letters, 294, 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Holohan, C., van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer, 13, 714–726.

    Article  CAS  PubMed  Google Scholar 

  • Hu, T., Li, Z., Gao, C.-Y., & Cho, C. H. (2016). Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World Journal of Gastroenterology, 22, 6876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, X., & Zhang, Z. (2016). Understanding the genetic mechanisms of cancer drug resistance using genomic approaches. Trends in Genetics, 32, 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Johannessen, T.-C.A., Bjerkvig, R., & Tysnes, B. B. (2008). DNA repair and cancer stem-like cells–potential partners in glioma drug resistance? Cancer Treatment Reviews, 34, 558–567.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S. W., Ozols, R. F., & Hamilton, T. C. (1993). Mechanisms of drug resistance in ovarian cancer. Cancer, 71, 644–649.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, P., Vishwakarma, R. A., & Bharate, S. B. (2017). Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer. European Journal of Medicinal Chemistry, 138, 273–292.

    Article  CAS  PubMed  Google Scholar 

  • Joyce, H., Mccann, A., Clynes, M., & Larkin, A. (2015). Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 11, 795–809.

    Article  CAS  Google Scholar 

  • Kars, M. D., Ä°ÅŸeri, O. D., Gunduz, U., & Molnar, J. (2008). Reversal of multidrug resistance by synthetic and natural compounds in drug-resistant MCF-7 cell lines. Chemotherapy, 54, 194–200.

    Article  CAS  PubMed  Google Scholar 

  • Kathawala, R. J., Gupta, P., Ashby, C. R., Jr., & Chen, Z.-S. (2015). The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resistance Updates, 18, 1–17.

    Article  PubMed  Google Scholar 

  • Kaufmann, S. H., & Vaux, D. L. (2003). Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene, 22, 7414.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E. S. (2016). Chemotherapy resistance in lung cancer. Springer.

    Book  Google Scholar 

  • Kim, D.-S., Park, S.-S., Nam, B.-H., Kim, I.-H., & Kim, S.-Y. (2006). Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-κB inactivation. Cancer Research, 66, 10936–10943.

    Article  CAS  PubMed  Google Scholar 

  • Koster, R., di Pietro, A., Timmer-Bosscha, H., Gibcus, J. H., van den Berg, A., Suurmeijer, A. J., Bischoff, R., Gietema, J. A., & de Jong, S. (2010). Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. The Journal of Clinical Investigation, 120, 3594–3605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalchuk, O., Filkowski, J., Meservy, J., Ilnytskyy, Y., Tryndyak, V. P., Vasyl’f, C., & Pogribny, I. P. (2008). Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Molecular Cancer Therapeutics, 7, 2152–2159.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Singh, U. K., & Chaudhary, A. (2015). Targeting autophagy to overcome drug resistance in cancer therapy. Future Medicinal Chemistry, 7, 1535–1542.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., & Shu, Y. (2014). Role of solute carriers in response to anticancer drugs. Molecular and Cellular Therapies, 2, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, J., Dong, C., & Ji, C. (2010). MicroRNA and drug resistance. Cancer Gene Therapy, 17, 523–531.

    Article  CAS  PubMed  Google Scholar 

  • Majidinia, M., & Yousefi, B. (2016). Long non-coding RNAs in cancer drug resistance development. DNA Repair, 45, 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Malek, E., Jagannathan, S., & Driscoll, J. J. (2014). Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget, 5, 8027.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashima, T., & Tsuruo, T. (2005). Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resistance Updates, 8, 339–343.

    Article  CAS  PubMed  Google Scholar 

  • Matson, D. R., & Stukenberg, P. T. (2011). Spindle poisons and cell fate: a tale of two pathways. Molecular Interventions, 11, 141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcgranahan, N., & Swanton, C. (2017). Clonal heterogeneity and tumor evolution: past, present, and the future. Cell, 168, 613–628.

    Article  CAS  PubMed  Google Scholar 

  • Miao, J., Du, Y.-Z., Yuan, H., Zhang, X.-G., & Hu, F.-Q. (2013). Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multi-drug resistant cancer cells. Colloids and Surfaces b: Biointerfaces, 110, 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Murray, G. I., Taylor, V. E., Mckay, J. A., Weaver, R. J., Ewen, S. W., Melvin, W. T., & Burke, M. D. (1995). The immunohistochemical localization of drug-metabolizing enzymes in prostate cancer. The Journal of Pathology, 177, 147–152.

    Article  CAS  PubMed  Google Scholar 

  • Natarajan, K., Xie, Y., Baer, M. R., & Ross, D. D. (2012). Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochemical Pharmacology, 83, 1084–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishio, K., Nakamura, T., Koh, Y., Suzuki, T., Fukumoto, H., & Saijo, N. (1999). Drug resistance in lung cancer. Current Opinion in Oncology, 11, 109.

    Article  CAS  PubMed  Google Scholar 

  • Panasci, L., Paiement, J.-P., Christodoulopoulos, G., Belenkov, A., Malapetsa, A., & Aloyz, R. (2001). Chlorambucil drug resistance in chronic lymphocytic leukemia: the emerging role of DNA repair. Clinical Cancer Research, 7, 454–461.

    CAS  PubMed  Google Scholar 

  • Parhi, P., Mohanty, C., & Sahoo, S. K. (2012). Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discovery Today, 17, 1044–1052.

    Article  CAS  PubMed  Google Scholar 

  • Pastan, I., & Gottesman, M. (1987). Multiple-drug resistance in human cancer. New England Journal of Medicine, 316, 1388–1393.

    Article  CAS  PubMed  Google Scholar 

  • Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., & Kohn, K. W. (2004). Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene, 23, 2934–2949.

    Article  CAS  PubMed  Google Scholar 

  • Rebucci, M., & Michiels, C. (2013). Molecular aspects of cancer cell resistance to chemotherapy. Biochemical Pharmacology, 85, 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  • Ross, D. D. & Nakanishi, T. 2010. Impact of breast cancer resistance protein on cancer treatment outcomes. Multi-Drug Resistance in Cancer. Springer.

    Google Scholar 

  • Sakai, W., Swisher, E. M., Karlan, B. Y., Agarwal, M. K., Higgins, J., Friedman, C., Villegas, E., Jacquemont, C., Farrugia, D. J., & Couch, F. J. (2008). Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature, 451, 1116–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salami, J., Alabi, S., Willard, R. R., Vitale, N. J., Wang, J., Dong, H., Jin, M., Mcdonnell, D. P., Crew, A. P., & Neklesa, T. K. (2018). Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Communications Biology, 1, 1–9.

    Article  CAS  Google Scholar 

  • Sinha, B. K. (1995). Topoisomerase inhibitors. Drugs, 49, 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, T., Fukazawa, N., San-Nohe, K., Sato, W., Yano, O., & Tsuruo, T. (1997). Structure− activity relationship of newly synthesized quinoline derivatives for reversal of multidrug resistance in cancer. Journal of Medicinal Chemistry, 40, 2047–2052.

    Article  CAS  PubMed  Google Scholar 

  • Swisher, E. M., Sakai, W., Karlan, B. Y., Wurz, K., Urban, N., & Taniguchi, T. (2008). Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Research, 68, 2581–2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, K., Mattern, M. R., Eng, W.-K., Mccabe, F. L. & Johnson, R. K. 1989. Nonproductive rearrangement of DNA topoisomerase I and II genes: correlation with resistance to topoisomerase inhibitors. JNCI: Journal of the National Cancer Institute, 81, 1732–1735.

    Google Scholar 

  • Todaro, M., Perez Alea, M., Scopelliti, A., Medema, J. P., & Stassi, G. (2008). IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle, 7, 309–313.

    Article  CAS  PubMed  Google Scholar 

  • Tsouris, V., Joo, M. K., Kim, S. H., Kwon, I. C., & Won, Y.-Y. (2014). Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers. Biotechnology Advances, 32, 1037–1050.

    Article  CAS  PubMed  Google Scholar 

  • Twentyman, P., Fox, N., & White, D. (1987). Cyclosporin A and its analogues as modifiers of adriamycin and vincristine resistance in a multi-drug resistant human lung cancer cell line. British Journal of Cancer, 56, 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vouri, M., & Hafizi, S. (2017). TAM receptor tyrosine kinases in cancer drug resistance. Cancer Research, 77, 2775–2778.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Zhang, H., & Chen, X. (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance, 2, 141–160.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Liang, S., Lian, X., Liu, L., Zhao, S., Xuan, Q., Guo, L., Liu, H., Yang, Y., & Dong, T. (2015). Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis. Scientific Reports, 5, 1–11.

    Google Scholar 

  • Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.

    Article  CAS  PubMed  Google Scholar 

  • Wong, H. L., Rauth, A. M., Bendayan, R., Manias, J. L., Ramaswamy, M., Liu, Z., Erhan, S. Z., & Wu, X. Y. (2006). A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharmaceutical Research, 23, 1574–1585.

    Article  CAS  PubMed  Google Scholar 

  • Workman, P., Al-Lazikani, B., & Clarke, P. A. (2013). Genome-based cancer therapeutics: targets, kinase drug resistance and future strategies for precision oncology. Current Opinion in Pharmacology, 13, 486–496.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki, R., Nishiyama, Y., Furuta, T., Hatano, H., Igarashi, Y., Asakawa, N., Kodaira, H., Takahashi, H., Aiyama, R., & Matsuzaki, T. (2011). Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo. Molecular Cancer Therapeutics, 10, 1252–1263.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z. J., Chee, C. E., Huang, S., & Sinicrope, F. A. (2011). The role of autophagy in cancer: therapeutic implications. Molecular Cancer Therapeutics, 10, 1533–1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, L., Li, N., Wang, H., Jia, X., Wang, X., & Luo, J. (2012). Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncology Reports, 28, 592–600.

    Article  CAS  PubMed  Google Scholar 

  • Zeng-Rong, N., Paterson, J., Alpert, L., Tsao, M.-S., Viallet, J., & Alaoui-Jamali, M. A. (1995). Elevated DNA repair capacity is associated with intrinsic resistance of lung cancer to chemotherapy. Cancer Research, 55, 4760–4764.

    CAS  PubMed  Google Scholar 

  • Zhang, H., & Mccarty, N. (2017). Tampering with cancer chemoresistance by targeting the TGM2-IL6-autophagy regulatory network. Autophagy, 13, 627–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batool Fatima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatima, B. et al. (2021). Drug Resistance in Cancer. In: Ahmed, S., Chandra Ojha, S., Najam-ul-Haq, M., Younus, M., Hashmi, M.Z. (eds) Biochemistry of Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-030-76320-6_13

Download citation

Publish with us

Policies and ethics