Skip to main content

Role of the Cerebellum in the Acquisition and Consolidation of Memory of Motor Learning

  • Conference paper
  • First Online:
Cerebellum as a CNS Hub

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The Marr–Albus–Ito cerebellar learning hypothesis proposed around 1970 has been tested by analyzing how the cerebellar flocculus (FL) induces adaptations in the horizontal vestibulo-ocular (HVOR) and optokinetic reflex (HOKR) eye movements through the synapse plasticity of Purkinje cells (PCs). In 1982, Ito’s group discovered the long-term depression (LTD) at parallel fiber (PF)–PC synapses by conjunctive electrical stimulation of PFs with climbing fibers (CFs). Many lines of experimental evidence using various methods and materials have supported the hypothesis. Today, the hypothesis is considered as a fundamental mechanism of cerebellar learning. Furthermore, it was found that after repetition of adaptations, the memory of adaptation is transferred from FL to the vestibular nuclei (VN) targeted by FL for consolidation through the plasticity of VN neurons. After overviewing the hypothesis, I discuss roles of multiple cerebellar plasticity in ocular reflex adaptations and the application of the hypothesis to integrative brain functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPAR:

α-amino-3-hydrooxy-5-methyl-4-isoxazolone propionate receptor

CF:

Climbing fiber

CN:

Cerebellar nuclei

CS:

Conditioned stimuli

EM:

Electron microscopy

EMN:

Extraocular muscle motor nuclei

FL:

Flocculus

HOKR:

Horizontal optokinetic response

HVOR:

Horizontal vestibulo-ocular reflex

IO:

Inferior olive

KI:

Knockin

KO:

Knockout

LTD:

Long-term depression

LTP:

Long-term potentiation

MF:

Mossy fiber

NO:

Nitric monoxide

PC:

Purkinje cell

PF:

Parallel fiber

US:

Unconditioned stimuli

VN:

Vestibular nucleus

References

  • Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A., & Tonegawa, S. (1994). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell, 79, 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Albus, J. S. (1971). Theory of cerebellar function. Mathematical Biosciences, 10, 25–61.

    Article  Google Scholar 

  • Anzai, M., & Nagao, S. (2014). Motor learning in the common marmosets: Vestibulo-ocular reflex adaptation and its sensitivity to inhibitors of Purkinje cell long-term depression. Neuroscience Research, 83, 33–42.

    Article  PubMed  Google Scholar 

  • Anzai, M., Kitazawa, H., & Nagao, S. (2010). Effects of reversible pharmacological shutdown of cerebellar flocculus on the memory of long-term horizontal vestibulo-ocular reflex adaptation in monkeys. Neuroscience Research, 68, 191–198.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, W., Wang, W., Kesaf, S., Mohamed, A. A., Fukazawa, Y., & Shigemoto, R. (2014). Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. Proceedings of the National Academy of Sciences of the United States of America, 111, E194–E202.

    CAS  PubMed  Google Scholar 

  • Batini, C., Ito, M., Kado, R. T., Jastreboff, P. J., & Miyashita, Y. (1979). Interaction between the horizontal vestibulo-ocular reflex and optokinetic response in rabbits. Experimental Brain Research, 37, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Boyden, E. S., & Raymond, J. L. (2003). Active reversal of motor memories reveals rules governing motor memory. Neuron, 39, 1031–1042.

    Article  CAS  PubMed  Google Scholar 

  • Boyden, E. S., Katoh, A., Pyle, J. L., Chatila, T. A., Tsien, R. W., & Raymond, J. L. (2006). Selective engagement of plasticity mechanisms for motor memory storage. Neuron, 57, 823–834.

    Article  CAS  Google Scholar 

  • Chan-Palay, V., Ito, M., Tongroach, P., Sakurai, M., & Palay, S. (1982). Inhibitory effects of motilin, somatostatin, [Leu]enkephalin, [Met]enkephalin, and taurine on neurons of the lateral vestibular nucleus: Interactions with gamma-aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America, 79, 3355–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collewijn, H., & Grootendorst, A. F. (1978). Adaptation of optokinetic and vestibulo-ocular reflexes to modified visual input in the rabbit. Progress in Brain Research, 50, 771–781.

    Article  Google Scholar 

  • Crepel, F., & Jaillard, D. (1990). Protein kinases, nitric oxide and long-term depression of synapses in the cerebellum. Neuroreport, 1, 133–136.

    Article  CAS  PubMed  Google Scholar 

  • De Zeeuw, C. I., Hansel, C., Bian, F., Koekkoek, S. K., van Alphen, A. M., Linden, D. J., & Oberdick, J. (1998). Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of vestibulo-ocular reflex. Neuron, 20, 495–508.

    Article  PubMed  Google Scholar 

  • Dufossé, M., Miyashita, Y., & Ito, M. (1977). Functional localization in rabbit’s cerebellar flocculus determined in relationship with eye movements. Neuroscience Letters, 5, 273–277.

    Article  PubMed  Google Scholar 

  • Dufossé, M., Ito, M., Jastreboff, P. J., & Miyashita, Y. (1978). A neural correlate in the rabbit’s cerebellum to adaptive modification of vestibulo-ocular reflex. Brain Research, 150, 611–616.

    Article  PubMed  Google Scholar 

  • Ebbinghause, H. E. (1985) Uber das Gedächtnis. Reprinted as memory: A contribution to experimental psychology (Ruger HA, Bussenius C, translators). k: Teachers College-Columbia UP, 1913.

    Google Scholar 

  • Eccles, J. C., Ito, M., & Szentágothai, J. (1967). The cerebellum as a neuronal machine. Springer-Verlag.

    Book  Google Scholar 

  • Eguchi, K., Velicky, P., Hollergeschwandtner, E., Itakura, M., Fukazawa, Y., Danzi, J. G., & Shigemoto, R. (2020). Advantages of acute slices prepared at physiological temperature in the characterization of synaptic functions. Front Cell Neuroscience, 14, 63. https://doi.org/10.3389/fncel.2020.00063

    Article  CAS  Google Scholar 

  • Endo, S., Suzuki, M., Sumi, M., Nairn, A. C., Morita, R., Yamakawa, K., Greengard, P., & Ito, M. (1999). Molecular identification of human G-substrate: A possible downstream component of cyclic GMP-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 96, 2467–2472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo, S., Shutoh, F., Dinh, T. L., Okamoto, T., Ikeda, T., Suzuki, M., Kawahara, S., Yanagihara, D., Yamada, K., Kirino, Y., Hartell, N. A., Yamaguchi, K., Itohara, S., Nairn, A. C., Greengard, P., Nagao, S., & Ito, M. (2009). Dual involvement of G-substrate in motor learning revealed by gene deletion. Proceedings of the National Academy of Sciences of the United States of America, 106, 3525–3530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feil, R., Hartmann, J., Luo, C., Wolfsgruber, W., Schilling, K., Feil, S., Barski, J. J., Meyer, M., Konnerth, A., De Zeeuw, C. I., & Hofmann, F. (2003). Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. The Journal of Cell Biology, 163, 295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs, A. F., & Robinson, D. A. (1966). A method for measuring horizontal and vertical eye movement chronically in the monkey. Journal of Applied Physiology, 21, 1068–1070.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, J., Highstein, S. M., & Ito, M. (1972). Cerebellar inhibitory control of the vestibulo-ocular reflex investigated in rabbit’s IIIrd nucleus. Experimental Brain Research, 14, 511–526.

    Article  CAS  PubMed  Google Scholar 

  • Gonshor, A., & Melvill-Jones, G. M. (1974). Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. Journal of Physiology (London), 256, 381–414.

    Article  Google Scholar 

  • Gutierrez-Castellanos, N., Da Silva-Matos, C. M., Zhou, K., Canto, C. B., Renner, M. C., Koene, L. M. C., Ozyildirim, O., Sprengel, R., Kessels, H. W., & De Zeeuw, C. I. (2017). Motor learning requires Purkinje cell synaptic potentiation through activation of AMPA-receptor subunit GluA3. Neuron, 93, 409–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel, C., de Jeu, M., Belguemunai, A., Houtman, S. H., Buitendijk, G. H., Andreev, D., De Zeeuw, C. I., & Eigersma, Y. (2006). αCaMKII is essential for cerebellar LTD and motor learning. Neuron, 51, 835–843.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, Y., Honda, T., Soda, K., Yokota, T., Mizusawa, H., Nagao, S., & Ishikawa, K. (2015). Quantification of human motor learning by prism adaptation of hand-reaching movement. PLoS One, 10, e0119376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirano, T. (1990). Effects of postsynaptic depolarization in the induction of synaptic depression between a granule cell and a Purkinje cell in rat cerebellar culture. Neuroscience Letters, 119, 145–147.

    Article  CAS  PubMed  Google Scholar 

  • Honda, T., & Ito, M. (2016). Development from Marr’s theory of the cerebellum. In L. M. Vaina & R. E. Passingham (Eds.), Computational theories and their implication in the brain (pp. 29–61). Oxford University Press.

    Google Scholar 

  • Honda, T., Nagao, S., Hashimoto, Y., Ishikawa, K., Yokota, T., Mizusawa, H., & Ito, M. (2018). Tandem internal models execute motor learning in the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 115, 7428–7433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki, K., & Hirata, Y. (2017). Computational theory underlying acute vestibulo-ocular reflex motor learning with cerebellar long-term depression and long-term potentiation. Cerebellum, 16, 827–839.

    Article  PubMed  Google Scholar 

  • Inoshita, T., & Hirano, T. (2018). Occurrence of long-term depression in the cerebellar flocculus during adaptation of optokinetic response. Elife, 7, pii: e36209. https://doi.org/10.7554/eLife.36209

    Article  Google Scholar 

  • Ito, M. (1970). Neurophysiological basis of the cerebellar motor control system. International Journal of Neurology, 7, 162–176.

    CAS  PubMed  Google Scholar 

  • Ito, M. (1972). Neural design of cerebellar motor control system. Brain Research, 40, 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (1974). The control mechanisms of cerebellar motor control system. In D. Schmidt & F. G. Worden (Eds.), The neuroscience IIIrd study program (pp. 293–303). MIT Press.

    Google Scholar 

  • Ito, M. (1982). Cerebellar control of vestibulo-ocular reflex –– Around the flocculus hypothesis. Annual Review of Neuroscience, 5, 275–296.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control. Raven.

    Google Scholar 

  • Ito, M. (1989). Long-term depression. Annual Review of Neuroscience, 12, 85–102.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (1993). Movement and thought: Identical control mechanisms by the cerebellum. Trends in Neurosciences, 16, 448–450.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (2001). Cerebellar long-term depression—characterization, signal transduction and functional roles. Physiological Reviews, 81, 1143–1195.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (2002). The molecular organization of cerebellar long-term depression. Nature Reviews. Neuroscience, 3, 896–902.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in Neurobiology, 78, 272–303.

    Article  PubMed  Google Scholar 

  • Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9, 304–313.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (2012). The cerebellum: Brain for an implicit self. FT Press.

    Google Scholar 

  • Ito, M., & Kano, M. (1982). Long-lasting depression of parallel fiber–Purkinje cell transmission induced by conjunctive activation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., & Karachot, L. (1990). Messengers mediating long-term desensitization in cerebellar Purkinje cells. Neuroreport, 1, 129–132.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., & Miyashita, Y. (1975). The effect of chronic destruction of inferior olive upon visual modification of vestibulo-ocular reflex. Proceedings Japan Academy, 51, 716–720.

    Article  Google Scholar 

  • Ito, M., & Nagao, S. (1991). Comparative aspects of horizontal ocular reflexes and their cerebellar adaptive control in vertebrates. Comparative Biochemistry and Physiology, 98C, 221–228.

    Google Scholar 

  • Ito, M., & Yoshida, M. (1964). The cerebellar-evoked monosynaptic inhibition of Deiters’ neurons. Experientia, 20, 515–516.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., Shiida, N., Yagi, N., & Yamamoto. (1974). The cerebellar modification of rabbit’s horizontal vestibulo-ocular reflex by sustained head rotation combined with visual stimulation. Proceedings Japan Academy, 50, 85–90.

    Article  Google Scholar 

  • Ito, M., Nisimaru, N., & Yamamoto, M. (1977). Specific patterns of neural connections involved in rabbits’ vestibulo-ocular reflex. Journal of Physiology (London), 265, 833–854.

    Article  CAS  Google Scholar 

  • Ito, M., Jastreboff, P. J., & Miyashita, Y. (1979). Adaptive modification of rabbit’s horizontal vestibulo-ocular reflex during sustained vestibular and optokinetic stimulation. Experimental Brain Research, 37, 17–30.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., Jastreboff, P. J., & Miyashita, Y. (1982a). Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Experimental Brain Research, 45, 233–242.

    CAS  PubMed  Google Scholar 

  • Ito, M., Sakurai, M., & Tongroach, P. (1982b). Climbing fibre induced both mossy fibre responsiveness and glutamate sensitivity of Purkinje cells. Journal of Physiology (London), 324, 113–134.

    Article  CAS  Google Scholar 

  • Ito, K., Uchida, Y., Ohtuski, S., Aizawa, S., Kawakami, H., Katsukura, Y., Kmiiie, J., & Terasaki, T. (2011). Quantitative membrane expression at the blood-brain barrier of adult and younger cynomolgus monkeys. Journal of Pharmaceutical Sciences, 100, 3939–3950.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., Yamaguchi, K., Nagao, S., & Yamazaki, T. (2014). Long-term depression as a model of cerebellar plasticity. Progress in Brain Research, 210, 1–30.

    Article  PubMed  Google Scholar 

  • Jang, D. C., Shim, H. G., & Kim, S. J. (2020). Intrinsic plasticity of cerebellar Purkinje cells contributes to motor memory consolidation. The Journal of Neuroscience, 40, 4145–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jastreboff, P. J. (1979). Evaluation and statistical judgement of neural responses to sinusoidal stimulation in cases with superimposed drift and noise. Biological Cybernetics, 33, 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Jorntell, H., & Ekerot, C.-F. (2002). Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron, 34, 797–806.

    Article  CAS  PubMed  Google Scholar 

  • Jorntell, H., & Ekerot, C.-F. (2003). Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. The Journal of Neuroscience, 23, 9620–9631.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kakegawa, W., Katoh, A., Narumi, S., Miura, E., Motohashi, J., Takahashi, A., Kohda, K., Fukazawa, Y., Yuzaki, M., & Matsuda, S. (2018). Optogenetic control of synaptic AMPA receptor endocytosis reveals roles of LTD in motor learning. Neuron, 99, 985–998.

    Article  CAS  PubMed  Google Scholar 

  • Kano, M., & Kato, M. (1987). Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature, 325, 276–279.

    Article  CAS  PubMed  Google Scholar 

  • Kano, M., Iino, K., Maekawa, K., & Kano, M.-S. (1991). Optokinetic responses of cells in the nucleus reticularis tegmenti pontis of the pigmented rabbit. Experimental Brain Research, 87, 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Kano, M., Rexhausen, U., Dreessen, J., & Konnerth, A. (1992). Synaptic excitation produces a long-lasting rebound potentiation of inhibitory signals in cerebellar Purkinje cells. Nature, 356, 601–604.

    Article  CAS  PubMed  Google Scholar 

  • Kano, M., Hashimoto, K., Chen, C., Abeliovich, A., Aiba, A., Kurihara, H., Watanabe, M., Inoue, Y., & Tonegawa, S. (1995). Impaired synapse elimination during cerebellar development in PKC gamma mutant mice. Cell, 83, 1223–1231.

    Article  CAS  PubMed  Google Scholar 

  • Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C., Inoue, Y., Kutsuwada, T., Yagi, T., Kang, Y., Aizawa, S., & Mishina, M. (1995). Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell, 81, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Kassardjian, C. D., Tan, Y. F., Chung, J. Y., Heskins, R., Petersen, M. J., & Broussard, D. M. (2005). The site of motor memory shifts with consolidation. The Journal of Neuroscience, 25, 7979–7985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, A., Kitazawa, H., Itohara, S., & Nagao, S. (1998). Dynamic characteristics and adaptability of mouse vestibulo-ocular and optokinetic response eye movements and the role of the flocculo-olivary system revealed by chemical lesions. Proceedings of the National Academy of Sciences of the United States of America, 95, 7705–7710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, A., Kitazawa, H., Itohara, S., & Nagao, S. (2000). Inhibition of nitric oxide synthesis and gene-knockout of neuronal nitric oxide synthase impaired adaptation of mouse optokinetic eye movements. Learning and Memory, 7, 220–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi, Y. (1985). Two groups of secondary vestibular neurons mediating horizontal canal signals, probably to the ipsilateral medial rectus muscle, under the influence of cerebellar flocculus in rabbits. Neuroscience Research, 2, 434–446.

    Article  CAS  PubMed  Google Scholar 

  • Kawato, M., Ohmae, S, Hoang, H., & Sanger, T. (2021). 50 years since the Marr, Ito, and Albus models of the cerebellum. Neuroscience, 462, 151–174. 

    Google Scholar 

  • Kawato, N., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57, 169–185.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of nonhuman primate. The Journal of Neuroscience, 23, 8432–8444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T., & Tanaka-Yamamoto, K. (2019). Postsynaptic stability and variability described by a stochastic model of endosomal trafficking. Frontiers in Cellular Neuroscience, 13, 72. https://doi.org/10.3389/fncell.2019.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T., Yamamoto, Y., & Tanaka-Yamamoto, K. (2017). Timely regulated sorting from early to late endosome is required to maintain cerebellar long-term depression. Nature Communications, 8, 401. https://doi.org/10.1038/s41467-017-00518-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, T., Sugimori, M., & Llinás, R. R. (2005). Purkinje cell long-term depression is prevented by T-588, a neuroprotective compound that reduces cytosolic calcium release from intracellular stores. Proceedings of the National Academy of Sciences of the United States of America, 102, 17160–17165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono, M., Kakegawa, W., Yoshida, K., & Yuzaki, M. (2019). Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum. The Journal of Physiology, 597, 903–920.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, Y., Hatada, S., Kondo, S., Karube, F., & Kawaguchi, Y. (2007). Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. The Journal of Neuroscience, 27, 1139–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le, T. D., Shirai, Y., Okamoto, T., Tatsukawa, T., Nagao, S., Shimizu, T., & Ito, M. (2010). Lipid signaling in cytosolic phospholipase A2α-cyclooxygenae-2 cascade mediates cerebellar long-term depression and motor learning. Proceedings of the National Academy of Sciences of the United States of America, 107, 3198–3203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lev-Ram, V., Wong, S. T., Storm, D. R., & Tsien, R. Y. (2002). A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proceedings of the National Academy of Sciences of the United States of America, 99, 8389–8394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lev-Ram, V., Mehta, S. B., Kleinfeld, D., & Tsien, R. Y. (2003). Reversing cerebellar long-term depression. Proceedings of the National Academy of Sciences of the United States of America, 100, 15989–15993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linden, D. J., & Conner, J. A. (1991). Long-term depression of glutamate currents in cultured cerebellar Purkinje neurons does not require nitric oxide signaling. The European Journal of Neuroscience, 4, 10–15.

    Article  Google Scholar 

  • Longley, M., & Yeo, C. H. (2014). Distribution of neural plasticity in cerebellum-dependent motor learning. Progress in Brain Research, 210, 79–102.

    Google Scholar 

  • Maekawa, K., & Simpson, J. I. (1973). Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual pathway. Journal of Neurophysiology, 36, 649–666.

    Article  CAS  PubMed  Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology (London), 202, 437–470.

    Article  CAS  Google Scholar 

  • Matsuno, H., Kudoh, M., Watakabe, A., Yamamori, T., Shigemoto, R., & Nagao, S. (2016). Distribution and structure of synapses on medial vestibular nuclear neurons targeted by cerebellar flocculus Purkinje cells and vestibular nerve in mice: Light and electron microscopy studies. PLoS One, 11(10), e0164037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McElvain, L. E., Bagnall, M. W., Sakatos, A., & du Lac, S. (2010). Bidirectional plasticity gated by hyperpolarization controls the gain of postsynaptic firing responses at central vestibular nerve synapses. Neuron, 68, 763–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a smith predictor? Journal of Motor Behavior, 25, 203–216.

    Article  CAS  PubMed  Google Scholar 

  • Miyashita, Y., Ito, M., Jasareboff, P. J., Maekawa, K., & Nagao, S. (1980). Effect upon eye movements of rabbits induced by severance of mossy fiber visual pathway to the cerebellar flocculus. Brain Research, 198, 210–215.

    Article  CAS  PubMed  Google Scholar 

  • Miyata, M., Kim, H. T., Hashimoto, K., Lee, T. K., Cho, S. Y., Jiang, H., Wu, Y., Jun, K., Wu, D., Kano, M., & Shin, H. S. (2001). Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta4 mutant mice. The European Journal of Neuroscience, 13, 1945–1954.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, S. (1983). Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits. Experimental Brain Research, 53, 36–46.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, S. (1988). Behavior of floccular Purkinje cells correlated with adaptation of horizontal optokinetic eye movement response in pigmented rabbits. Experimental Brain Research, 73, 489–497.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, S. (1989). Behavior of floccular Purkinje cells correlated with adaptation of vestibulo-ocular reflex in pigmented rabbits. Experimental Brain Research, 77, 531–540.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, S. (1990). A non-invasive method for eye position recording with an infra-red TV-camera. Neuroscience Research, 8, 210–213.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, S. (2019). Obituary: Masao Ito (1928–2018). The Cerebellum. https://doi.org/10.1007/s12311-019-012022-8

  • Nagao, S. (2021). Ocular reflex adaptation as an experimental model of cerebellar learning — in memory of Masao Ito —. Neuroscience, 462, 191204. 

    Google Scholar 

  • Nagao, S., Hirai, H., Kano, M., & Yuzaki, M. (2021). Masao Ito — A visionary neuroscientist with a passion for the cerebellum. Neuroscience, 462, 1−3.

    Google Scholar 

  • Nagao, S., & Ito, M. (2017). Roles of synaptic plasticity in the functional recovery after brain injury. In L. Petrosini (Ed.), Contemporary clinical neuroscience, neurobiological and psychological aspects of brain recovery (pp. 153–181). Springer.

    Chapter  Google Scholar 

  • Nagao, S., & Kano, M. (2019). Obituary: Masao Ito (1928–2018). Neuroscience Research, 141, 1–3.

    Article  Google Scholar 

  • Nagao, S., & Kitazawa, H. (2003). Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of horizontal vestibulo-ocular reflex. Neuroscience, 118, 563–570.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, S., Ito, M., & Karachot, L. (1985). Eye fields in the cerebellar flocculus of pigmented rabbits determined with local electrical stimulation. Neuroscience Research, 3, 39–51.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, S., Kitamura, T., Nakamura, N., Hiramatsu, T., & Yamada, J. (1997). Differences of primate flocculus and ventral paraflocculus in mossy and climbing fiber input organization. The Journal of Comparative Neurology, 382, 480–498.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, S., Honda, T., & Yamazaki, T. (2013). Transfer of memory trace of cerebellum-dependent motor learning in human prism adaptation. Neural Networks, 47, 72–82.

    Article  PubMed  Google Scholar 

  • Obata, K., Ito, M., Ochi, R., & Sato, N. (1967). Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of gamma-aminobutyric acid on Deiters neuron. Experimental Brain Research, 4, 43–57.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, T., Endo, S., Shirao, T., & Nagao, S. (2011a). Cerebellar cortical protein synthesis-dependent transfer of memory trace underlies the spacing effect in motor learning. The Journal of Neuroscience, 31, 8958–8966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto, T., Shirao, T., Shutoh, F., Suzuki, T., & Nagao, S. (2011b). Post-training cerebellar cortical activity plays an important role for consolidation of memory of cerebellum-dependent motor learning. Neuroscience Letters, 504, 53–56.

    Article  CAS  PubMed  Google Scholar 

  • Osanai, R., Nagao, S., Kitamura, T., Kawabata, I., & Yamada, J. (1999). Difference of afferent input organization between the flocculus and paraflocculus in the rat. Experimental Brain Research, 124, 248–264.

    Article  CAS  PubMed  Google Scholar 

  • Parkinson, G. T., & Hanley, G. J. (2018). Mechanisms of AMPA receptor endosomal sorting. Frontiers in Molecular Neuroscience, 11, 440. https://doi.org/10.3389/fnmol.2018.00440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piochon, C., Kloth, A. D., Grasselli, G., Titley, H., Nakayama, H., Hashimoto, K., Wan, V., Simmons DH, Eissa, T., Nakatani, J., Cherskov, A., Miyazaki, T., Watanabe, M., Takumi, T., Kano, M., Wang, S. S.-H., & Hansel, H. (2015). Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nature Communications. https://doi.org/10.1038/ncomms6586

  • Precht, W., & Shimazu, H. (1965). Tonic and kinetic responses of cat’s vestibular neurons to horizontal angular acceleration. Journal of Neurophysiology, 28, 991–1013.

    Article  PubMed  Google Scholar 

  • Pugh, J. R., & Raman, M. (2006). Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron, 51, 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Rancillac, A., & Crepel, F. (2004). Synapses between parallel fibers and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. Journal of Physiology (London), 554, 707–720.

    Article  CAS  Google Scholar 

  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–408.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai, M. (1987). Synaptic modification of parallel fibre–Purkinje cell transmission in in vitro guinea-pig preparations. Journal of Physiology (London), 394, 463–480.

    Article  CAS  Google Scholar 

  • Sano, T., Kohyama-Koganeya, Y., Kinoshita, M. O., Tatsukawa, T., Shimizu, C., Oshima, E., Hama, H., Yamada, K., Le, T. D., Miyawaki, A., Tohyama, K., Nagao, S., & Hirabayashi, Y. (2018). Loss of GPRC5B impairs synapse formation of Purkinje cells with cerebellar nuclear neurons and disrupts cerebellar synaptic plasticity and motor learning. Neuroscience Research, 136, 33–47.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Kanda, K., & Kawasaki, T. (1987). Target neurons of floccular middle zone inhibition in medial vestibular nucleus. Brain Research, 446, 225–235.

    Article  Google Scholar 

  • Schonewille, M., Gao, Z., Boele, H.-J., Veloz, M. F. V., Amerika, W. E., Simek, A. A. M., De Jew, M. T., Steinberg, J. P., Takamiya, K., Hoebeek, F. E., Linden, D. J., Huganir, R. L., & De Zeeuw, C. I. (2011). Reevaluating the role of LTD in cerebellar motor learning. Neuron, 70, 43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekirnjak, C., Vissel, B., Bollinger, J., Faulstich, M., & du Lac, S. (2003). Purkinje cell synapses target physiologically unique brainstem neurons. The Journal of Neuroscience, 23, 6392–6398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S., & Nagao, S. (2006). Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience, 139, 767–777.

    Article  CAS  PubMed  Google Scholar 

  • Sugawara, T., Hisatsune, C., Le, T. D., Hashikawa, T., Hirono, M., Nagao, S., & Mikoshiba, K. (2013). IP3R1 regulates cerebellar circuits by maintaining the spine and dendritic morphology of Purkinje cells in adult mice. The Journal of Neuroscience, 33, 12186–12195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara, I., & Shinoda, Y. (2004). Molecular, topographic and functional organization of the cerebellar cortex: A study with combined aldolase C and olivocerebellar labeling. The Journal of Neuroscience, 24, 8771–8785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, S., Kawaguchi, S. Y., Shioi, G., & Hirano, T. (2013). Long-term potentiation of inhibitory synaptic transmission onto cerebellar Purkinje neurons contributes to adaptation of vestibulo-ocular reflex. The Journal of Neuroscience, 33, 17209–17220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, R. F. (1988). The neural basis of basic associative learning of discrete behavioral responses. Trends in Neurosciences, 11, 152–155.

    Article  CAS  PubMed  Google Scholar 

  • Todaka, H., Tatsukawa, T., Hashikawa, T., Yanagawa, Y., Shibuki, K., & Nagao, S. (2013). Heterotrimetric guanosine triphosphate-binding protein-coupled modulatory actions of motilin on K+ channels and postsynaptic GABA receptors in mouse medial vestibular nuclear neurons. The European Journal of Neuroscience, 37, 339–350.

    Article  PubMed  Google Scholar 

  • Tsukahara, N., Hultborn, H., Murakami, F., & Fujito, Y. (1975). Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. Journal of Neurophysiology, 38, 1359–1372.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Nakadate, K., Masugi-Tokita, M., Shutoh, F., Aziz, W., Tarusawa, E., Lorincz, A., Molonar, E., Kesef, S., Li, Y.-Q., Fukazawa, Y., Nagao, S., & Shigemoto, R. (2014). Distinct cerebellar engrams in short-term and long-term motor learning. Proceedings of the National Academy of Sciences of the United States of America, 111, E188–E193.

    CAS  PubMed  Google Scholar 

  • Watanabe, E. (1985). Role of the primate flocculus in adaptation of vestibulo-ocular reflex. Neuroscience Research, 3, 20–38.

    Article  CAS  PubMed  Google Scholar 

  • Welsh, J. P., Yamaguchi, H., Zeng, X. H., Kojo, M., Nakada, Y., Takagi, A., Sugimori, M., & Llinás, R. R. (2005). Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proceedings of the National Academy of Sciences of the United States of America, 102, 17166–17171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, K., Itohara, S., & Ito, M. (2016). Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus. Proceedings of the National Academy of Sciences of the United States of America, 113, 10192–10197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki, T., & Nagao, S. (2012). A computational mechanism for unified gain and timing control in the cerebellum. PLoS One, 7, e33319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki, T., & Tanaka, S. (2007). A spiking network model for passage-of-time representation in the cerebellum. The European Journal of Neuroscience, 26, 2279–2292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamazaki, T., Nagao, S., Lennon, W., & Tanaka, S. (2015). Modeling the memory consolidation during post-training periods in cerebellovestibular learning system. Proceedings of the National Academy of Sciences of the United States of America, 112, 3541–3546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo, C. H., & Hesslow, G. (1998). Cerebellum and conditioned reflexes. Trends in Cognitive Sciences, 2, 320–330.

    Google Scholar 

  • Yeo, C. H., Hardman, M. J., & Glickstein, M. (1985a). Classical-conditioning of nictitating response of the rabbit. I. Lesions of the cerebellar nuclei. Experimental Brain Research, 60, 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Yeo, C. H., Hardman, M. J., & Glickstein, M. (1985b). Classical-conditioning of nictitating response of the rabbit. II. Lesions of the cerebellar cortex. Experimental Brain Research, 60, 99–113.

    Article  CAS  PubMed  Google Scholar 

  • Yeo, C. H., Hardman, M. J., & Glickstein, M. (1985c). Classical-conditioning of nictitating response of the rabbit. III. Connections of cerebellar lobule HVI. Experimental Brain Research, 60, 114–126.

    Article  CAS  PubMed  Google Scholar 

  • Yeo, C. H., Hardman, M. J., & Glickstein, M. (1986). Classical-conditioning of nictitating response of the rabbit. IV. Lesions of inferior olive. Experimental Brain Research, 61, 81–92.

    Google Scholar 

  • Yuzaki, M. (2013). Cerebellar LTD vs. motor learning–lessons learned from studying GluD2. Neural Networks, 47, 36–41.

    Article  PubMed  Google Scholar 

  • Zhang, W., & Linden, D. J. (2006). Long-term depression at the mossy fiber–deep cerebellar nucleus synapse. The Journal of Neuroscience, 26, 6935–6944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank to late Dr. Masao Ito for his mentorship to my study of the cerebellum and ocular reflexes. I also thank to Dr. Shogo Endo (Tokyo Metropolitan Institute for Gerontology) for his helpful comments on my manuscript and Dr. Fumihiro Shutoh (Maebashi Institute of Technology, Gunma) for his help in the revision of figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichi Nagao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagao, S. (2021). Role of the Cerebellum in the Acquisition and Consolidation of Memory of Motor Learning. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_14

Download citation

Publish with us

Policies and ethics