Skip to main content

Patterns and Expression of Torpor

  • Chapter
  • First Online:
Ecological Physiology of Daily Torpor and Hibernation

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Torpor is used by many birds and mammals. However, despite the number and diversity of species, it seems only two major patterns have been favoured by natural selection. In most heterothermic endotherms torpor is characterized by either a daily occurrence (‘daily torpor’ in the ‘daily heterotherms’), which often use torpor throughout the year, or multiday torpor in the ‘hibernators’ with often a seasonal occurrence (Fig. 1.7). In many species these two patterns of torpor differ ecologically and functionally. Only a few species appear to display intermediate torpor patterns. However, the comparison between the two torpor patterns is complicated by the strong temperature-dependence of most physiological variables of torpor, which therefore may overlap especially at high Tas (see below). Moreover, long-term studies that have reliably characterised patterns of torpor of species are not always available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartholomew GA, Howell TR, Cade TJ (1957) Torpidity in the white-throated swift, anna hummingbird and poor-will. Condor 59:145–155

    Article  Google Scholar 

  • Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96:165–171

    Article  CAS  PubMed  Google Scholar 

  • Blanco MB, Green LK, Schopler R, Williams CV, Lynch D, Browning J, Welser K, Simmons M, Klopfer PH, Ehmke EE (2021) On the modulation and maintenance of hibernation in captive dwarf lemurs. Sci Rep 11:5740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondarenco A, Körtner G, Geiser F (2014) Hot bats: extreme thermal tolerance in a desert heat wave. Naturwissenschaften 101:679–685

    Article  CAS  PubMed  Google Scholar 

  • Boyles JG, Smit B, McKechnie AE (2011) A new comparative metric for estimating heterothermy in endotherms. Physiol Biochem Zool 84:115–123

    Article  PubMed  Google Scholar 

  • Boyles JG, Thompson AB, McKechnie AE, Malan AE, Humphries MM, Careau V (2013) A global heterothermic continuum in mammals. Glob Ecol Biogeogr 22:1029–1039

    Article  Google Scholar 

  • Brigham RM, McKechnie AE, Doucette LI, Geiser F (2012) Heterothermy in caprimulgid birds: a review of inter- and intraspecific variation in free-ranging populations. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world. Springer, Berlin, pp 175–187. https://doi.org/10.1007/978-3-642-28678-0_16

    Chapter  Google Scholar 

  • Buffenstein R (1985) The effect of starvation, food restriction, and water deprivation on thermoreguation and average daily metabolic rates in Gerbillus pusillus. Physiol Zool 58:320–328

    Article  Google Scholar 

  • Caviedes-Vidal E, Codelia EC, Roig V, Doña R (1990) Facultative torpor in the south American rodent Calomys venustus (Rodentia: Cricetidae). J Mammal 71:72–75

    Article  Google Scholar 

  • Chi QS, Wan XR, Geiser F, Wang DH (2016) Fasting-induced daily torpor in desert hamsters (Phodopus roborovskii). Comp Biochem Physiol A 199:71–77

    Article  CAS  Google Scholar 

  • Cooper CE, McAllan BM, Geiser F (2005) Effect of torpor on the water economy of an arid-zone marsupial, the striped-faced dunnart (Sminthopsis macroura). J Comp Physiol B 175:323–328

    Article  CAS  PubMed  Google Scholar 

  • Currie SE (2015) Cardiorespiratory function and metabolism of heterothermic bats. PhD dissertation. University of New England, Armidale

    Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    Article  CAS  PubMed  Google Scholar 

  • Dawson WR, Fisher CD (1969) Responses to temperature by the spotted nightjar (Eurostopodus guttatus). Condor 71:49–53

    Article  Google Scholar 

  • Eto T, Hayashi R, Okubo Y, Kashimura A, Koshimoto C, Sakamoto SH, Morita T (2015) Magnitude of food overabundance affects expression of daily torpor. Physiol Behav 139:519–523

    Article  CAS  PubMed  Google Scholar 

  • Gaertner RA, Hart JS, Roy OZ (1973) Seasonal spontaneous torpor in the white-footed mouse Peromyscus leucopus. Comp Biochem Physiol A 45:169–181

    Article  CAS  PubMed  Google Scholar 

  • Geiser F (2007) Yearlong hibernation in a marsupial mammal. Naturwissenschaften 94:941–944

    Article  CAS  PubMed  Google Scholar 

  • Geiser F (2020) Seasonal expression of avian and mammalian daily torpor and hibernation: not a simple summer-winter affair. Front Physiol 11:436

    Article  PubMed  PubMed Central  Google Scholar 

  • Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344

    Article  Google Scholar 

  • Geiser F, Baudinette RV (1988) Daily torpor and thermoregulation in the small dasyurid marsupials Planigale gilesi and Ningaui yvonneae. Aust J Zool 36:473–481

    Article  Google Scholar 

  • Geiser F, Brigham RM (2000) Torpor, thermal biology, and energetics in Australian long-eared bats (Nyctophilus). J Comp Physiol B 170:153–162

    Article  CAS  PubMed  Google Scholar 

  • Geiser F, Broome LS (1991) Hibernation in the mountain pygmy possum Burramys parvus (Marsupialia). J Zool 223:593–602

    Article  Google Scholar 

  • Geiser F, Hiebert S, Kenagy GJ (1990) Torpor bout duration during the hibernation season of two sciurid rodents: interrelations with temperature and metabolism. Physiol Zool 63:489–503

    Article  Google Scholar 

  • Geiser F, Kenagy GJ, Wingfield JC (1997) Dietary cholesterol enhances torpor in a rodent hibernator. J Comp Physiol B 167:416–422

    Article  CAS  PubMed  Google Scholar 

  • Geiser F, Klingenspor M, McAllan BM (2013) A functional nexus between photoperiod acclimation, torpor expression and somatic fatty acid composition in a heterothermic mammal. PLoS One 8(5):e63803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall M (1832) On hybernation. Trans Royal Soc London B 122:335–360

    Article  Google Scholar 

  • Heldmaier G, Steinlechner S (1981b) Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia 48:265–270

    Article  PubMed  Google Scholar 

  • Hill RW (1975) Daily torpor in Peromyscus leucopus on an adequate diet. Comp Biochem Physiol A 51:413–423

    Article  CAS  PubMed  Google Scholar 

  • Hissa R (1997) Physiology of the European brown bear (Ursus arctos arctos). Ann Zool Fenn 34:267–287

    Google Scholar 

  • Hoelzl F, Bieber C, Cornils JS, Gerritsmann H, Stalder GL, Walzer C, Ruf T (2015) How to spend the summer? Free-living dormice (Glis glis) can hibernate for 11 months in non-reproductive years. J Comp Physiol B 185:931–939

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. J Comp Physiol B 167:71–80

    Article  CAS  PubMed  Google Scholar 

  • Humphries MM, Thomas DW, Kramer DL (2003) The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol Biochem Zool 76:165–179

    Article  PubMed  Google Scholar 

  • Ibuka N, Fukumura K (1997) Unpredictable deprivation of water increases the probability of torpor in the Syrian hamsters. Physiol Behav 62:551–556

    Article  CAS  PubMed  Google Scholar 

  • Kenagy GJ, Barnes BM (1988) Seasonal reproductive patterns in four coexisting rodent species from the Cascade Mountains, Washington. J Mammal 69:274–292

    Article  Google Scholar 

  • Kenagy GJ, Sharbaugh SM, Nagy KA (1989) Annual cycle of energy and time expenditure in a golden-mantled ground squirrel population. Oecologia 78:269–282

    Article  CAS  PubMed  Google Scholar 

  • Klug-Baerwald BJ, Brigham RM (2017) Hung out dry? Intraspecific variation in water loss in a hibernating bat. J Comp Physiol B 183:977–985

    Google Scholar 

  • Körtner G, Geiser F (2009) The key to winter survival: daily torpor in a small arid zone marsupial. Naturwissenschaften 96:525–530

    Article  PubMed  CAS  Google Scholar 

  • Körtner G, Brigham RM, Geiser F (2000) Winter torpor in a large bird. Nature 407:318

    Article  PubMed  Google Scholar 

  • Körtner G, Rojas AD, Geiser F (2010) Thermal biology, torpor use and activity patterns of a small marsupial from a tropical desert: sexual differences. J Comp Physiol B 180:869–876

    Article  PubMed  Google Scholar 

  • Landry-Cuerrier M, Munro D, Thomas DW, Humphries MM (2008) Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology 89:3306–3316

    Article  CAS  PubMed  Google Scholar 

  • Levin E, Plotnik B, Amichai E, Braulke LJ, Landau S, Yom-Tov Y, Kronfeld-Schor N (2015) Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation. Proc R Soc B 282:20142781

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovegrove BG, Raman J, Perrin MR (2001) Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): daily torpor or hibernation? J Comp Physiol B 171:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lovegrove BG, Lobban KD, Levesque DL (2014) Mammal survival at the cretaceous-Paleogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs. Proc R Soc B 281:20141303

    Article  Google Scholar 

  • Lynch GR, White SE, Grundel R, Berger MS (1978) Effects of photoperiod, melatonin administration and thyroid block on spontaneous daily torpor and temperature regulation in the white-footed mouse, Peromyscus leucopus. J Comp Physiol B 125:157–163

    Article  CAS  Google Scholar 

  • MacCannell ADV, Staples JF (2021) Elevated ambient temperature accelerates aspects of torpor phenology in an obligate hibernator. J Thermal Biol 96:102839

    Article  Google Scholar 

  • MacMillen RE (1965) Aestivation in the cactus mouse Peromyscus eremicus. Comp Biochem Physiol 16:227–247

    Article  CAS  PubMed  Google Scholar 

  • MacMillen RE (1972) Water economy of nocturnal desert rodents. Symp Zool Soc Lond 31:147–174

    Google Scholar 

  • MacMillen RE, Trost CH (1967) Nocturnal hypothermia in the Inca dove Scardafella inca. Comp Biochem Physiol 23:243–252

    Article  CAS  PubMed  Google Scholar 

  • McKechnie AE, Lovegrove BG (2002) Avian facultative hypothermic responses: a review. Condor 104:705–724

    Article  Google Scholar 

  • Michener GR (1992) Sexual differences in over-winter torpor patterns of Richardson’s ground squirrels in natural hibernacula. Oecologia 89:397–406

    Article  PubMed  Google Scholar 

  • Morhardt JE, Hudson JW (1966) Daily torpor induced in white-footed mice (Peromyscus spp.) by starvation. Nature 212:1046–1047

    Article  CAS  PubMed  Google Scholar 

  • Mrosovsky N (1990) Rheostasis: the physiology of change. Oxford University Press, New York

    Google Scholar 

  • Munn AJ, Kern P, McAllan BM (2010) Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). Naturwissenschaften 97:601–605

    Article  CAS  PubMed  Google Scholar 

  • Nilsson JF, Nilsson AA, Broggi J, Watson H (2020) Predictability of food supply modulates nocturnal hypothermia is a small passerine. Biol Lett 16:20200133

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowack J, Levesque DL, Reher S, Dausmann KH (2020) Variable climates lead to varying phenotypes: “weird” mammalian torpor and lessons from lower latitudes. Front Ecol Evol. https://doi.org/10.3389/fevo.2020.00060

  • Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev 90:891–926

    Article  PubMed  Google Scholar 

  • Ruf T, Stieglitz A, Steinlechner S, Blank JL, Heldmaier G (1993) Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J Exp Zool 267:104–112

    Article  CAS  PubMed  Google Scholar 

  • Schleucher E (2001) Heterothermia in pigeons and doves reduces energetic costs. J Therm Biol 26:287–293

    Article  Google Scholar 

  • Siutz C, Franceschini C, Millesi E (2016) Sex and age differences in hibernation patterns of common hamsters: adult females hibernate for shorter periods than males. J Comp Physiol B 186:801–811

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith FA, Lyons SK, Ernest SKM, Jones KE, Kaufman DM, Dayan T, Marquet PA, Brown JH, Haskell JP (2003) Body mass of quaternary mammals. Ecology 84:3403

    Article  Google Scholar 

  • Song X, Geiser F (1997) Daily torpor and energy expenditure in Sminthopsis macroura: interactions between food and water availability and temperature. Physiol Zool 70:331–337

    Article  CAS  PubMed  Google Scholar 

  • Song X, Körtner G, Geiser F (1997) Thermal relations of metabolic rate reduction in a hibernating marsupial. Am J Phys 273:R2097–R2104

    CAS  Google Scholar 

  • Stawski C, Currie SE (2016) Effect of roost choice on winter torpor patterns of a free-ranging insectivorous bat. Aust J Zool 64:132–137

    Article  Google Scholar 

  • Stawski C, Geiser F (2011) Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics? Am J Phys 301:R542–R547

    CAS  Google Scholar 

  • Stawski C, Turbill C, Geiser F (2009) Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J Comp Physiol B 179:433–441

    Article  PubMed  Google Scholar 

  • Tannenbaum MG, Pivorun EB (1988) Seasonal study of daily torpor in southeastern Peromyscus maniculatus and Peromyscus leucopus from mountains and foothills. Physiol Zool 61:10–16

    Article  Google Scholar 

  • Tannenbaum MG, Pivorun EB (1989) Summer torpor in montane Peromyscus maniculatus. Am Midl Nat 121:194–197

    Article  Google Scholar 

  • Tissier ML, Marchandeau S, Habold C, Handrich Y, Eidenschenk J, Kourkgy C (2019) Weeds as a predominant food source: a review of the diet of common hamsters Cricetus cricetus in farmlands and urban habitats. Mammal Rev 49:152–170

    Article  Google Scholar 

  • Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909

    Article  PubMed  CAS  Google Scholar 

  • Turbill C, Geiser F (2006) Thermal biology of pregnant and lactating female and male long-eared bats, Nyctophilus geoffroyi and N. gouldi. J Comp Physiol B 176:165–172

    Article  PubMed  Google Scholar 

  • Turbill C, Law BS, Geiser F (2003a) Summer torpor in a free-ranging bat from sub-tropical Australia. J Therm Biol 28:223–226

    Article  Google Scholar 

  • Wang LCH (1978) Energetics and field aspects of mammalian torpor: the Richardson’s ground squirrel. In: Wang LCH, Hudson JW (eds) Strategies in cold, natural torpidity and thermogenesis. Academic, New York, pp 109–145

    Google Scholar 

  • Warnecke L, Turner JM, Geiser F (2008) Torpor and basking in a small arid zone marsupial. Naturwissenschaften 95:73–78

    Article  CAS  PubMed  Google Scholar 

  • Wassmer T (2004) Body temperature and above-ground patterns during hibernation in European hamsters (Cricetus cricetus L.). J Zool 262:281–288

    Article  Google Scholar 

  • Wilz M, Heldmaier G (2000) Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. J Comp Physiol 170:511–521

    Article  CAS  Google Scholar 

  • Withers PC, Richardson KC, Wooller RD (1990) Metabolic physiology of euthermic and torpid honey possums, Tarsipes rostratus. Aust J Zool 37:685–693

    Article  Google Scholar 

  • Woods CP, Czenze ZJ, Brigham RM (2019) The avian “hibernation” enigma: thermoregulatory patterns and roost choice of the common poorwill. Oecologia 189:47–53

    Article  PubMed  Google Scholar 

  • Young PJ (1990) Hibernation patterns of free-ranging Columbian ground squirrels. Oecologia 83:504–511

    Article  CAS  PubMed  Google Scholar 

  • Barnes BM (1989) Freeze avoidance in a mammal: body temperatures below 0°C in an Arctic hibernator. Science 244:1593–1595

    Article  CAS  PubMed  Google Scholar 

  • Lasiewski RC (1963) Oxygen consumption of torpid, resting, active and flying hummingbirds. Physiol Zool 36:122–140

    Article  CAS  Google Scholar 

  • Reher S, Dausmann KH (2021) Tropical bats counter heat by combining torpor with adaptive hyperthermia. Proc R Soc B 288:20202059. https://doi.org/10.1098/rspb.2020.2059

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiebert SM (1993a) Seasonal changes in body mass and use of torpor in a migratory hummingbird. Auk 110:787–797

    Article  Google Scholar 

  • Hiebert SM (1993b) Seasonality of daily torpor in a migratory hummingbird. In: Carey C, Florant GL, Wunder BA, Horwitz B (eds) Life in the cold: ecological, physiological and molecular mechanisms. Westview, Boulder, pp 25–32

    Google Scholar 

  • Geiser F (1988a) Daily torpor and thermoregulation in Antechinus (Marsupialia): influence of body mass, season, development, reproduction, and sex. Oecologia 77:395–399

    Article  PubMed  Google Scholar 

  • Geiser F, McAllan BM, Kenagy GJ, Hiebert SM (2007b) Photoperiod affects daily torpor and tissue fatty acid composition in deer mice. Naturwissenschaften 94:319–325

    Article  CAS  PubMed  Google Scholar 

  • Diedrich V, Kumstel S, Steinlechner S (2012) Spontaneous daily torpor and fasting-induced torpor in Djungarian hamsters are characterized by distinct patterns of metabolic rate. J Comp Physiol B 185:355–366

    Article  CAS  Google Scholar 

  • Schmid J, Speakman JR (2009) Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): a comparison of dry and wet forests. Naturwissenschaften 96:609–620

    Article  CAS  PubMed  Google Scholar 

  • Siutz C, Ammann V, Millesi E (2018) Shallow torpor expression in free-ranging common hamsters with and without food supplementation. Front Ecol Evol 6:190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geiser, F. (2021). Patterns and Expression of Torpor. In: Ecological Physiology of Daily Torpor and Hibernation. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-75525-6_4

Download citation

Publish with us

Policies and ethics