Skip to main content

Pullulan: Biosynthesis, Production and Applications

  • Chapter
  • First Online:
Microbial Exopolysaccharides as Novel and Significant Biomaterials

Abstract

Pullulan, a exopolysaccharide polymer derived mainly from Aureobasidium pullulan, consists of alpha-1,4 linked maltotriose units which are connected by alpha-1,6 linkages between the terminal glycosidic residues of the trisaccharide and provides resistance against cell desiccation and predation. This chapter discusses pullulan chemistry and organisms responsible for its production, with an emphasis on fungus Aureobasidium pullulan. Further, the chapter focuses on pullulan biosynthesis, factors affecting the pathway, summarizing the state-of-the-art of production, upstream and downstream process, and its applications. Mechanism of biosynthesis intends to illustrate the key features involved in the intracellular pullulan synthesis using various sources such as glucose and sucrose. Pullulan production via fermentation process is widely accepted and this biopolymer shows large range of applications in various fields such as drug delivery, environment, medical science, food technology and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An C, Ma SJ, Chang F, Xue WJ (2017) Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose. Braz J Microbiol 43:180–185

    Article  CAS  Google Scholar 

  2. Audet J, Gagnon H, Lounes M, Thibault J (1998) Polysaccharide production: experimental comparison of the performance of four mixing devices. Bioprocess Eng 19:45–52

    Article  CAS  Google Scholar 

  3. Audet J, Lounes M, Thibault J (1996) Pullulan fermentation in a reciprocating plate bioreactor. Bioprocess Eng 15:209–214

    Google Scholar 

  4. Bae B, Yang S-G, Jeong S, Lee D-H, Na K, Kim JM, Costamagna G, Kozarek RA, Isayama H, Deviere H (2014) Polymeric photosensitizer-embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma. Biomaterials 35:8487–8495

    Article  CAS  PubMed  Google Scholar 

  5. Bauer R (1938) Physiology of dematium pullulans de Bary. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg Abt2 98:133–167

    Google Scholar 

  6. Bermu´dez J, Rosales N, Loreto C, Bricen˜o B, Morales E (2004) Exopolysaccharide, pigment and protein production by the marine microalga Chroomonas sp. in semicontinuous cultures. World J Microbiol Biotechnol 20:179–183

    Google Scholar 

  7. Bruneel D, Schacht E (1993) Chemical modification of pullulan: 1. Periodate oxidation. Polymer 34:2628–2632

    Article  CAS  Google Scholar 

  8. Bulmer MA, Catley BJ, Kelly PJ (1987) The effect of ammonium ions and pH on the elaboration of the fungal extracellular polysaccharide, pullulan, by Aureobasidium pullulans. Appl Microbiol Biotechnol 25:362–365

    Article  CAS  Google Scholar 

  9. Campbell SB, McDougall MB, Seviour JR (2003) Why do exopolysaccharide yields from the fungus Aureobasidium pullulans fall during batch culture fermentation? Enzym Microb Technol 33:104–112

    Article  CAS  Google Scholar 

  10. Catley BJ (1971) Utilization of carbon sources by Pullularia pullulans for the elaboration of extracellular polysaccharides. Appl Microbiol 22:641–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Catley BJ, McDowell W (1982) Lipid-linked saccharides formed during pullulan biosynthesis in Aureobasidium. Carbohydr Res 103:65–75

    Article  CAS  Google Scholar 

  12. Chang YH (2009) The effect of light on the production of the fungal extracellular polysaccharide by Aureobasidium pullulans. Masteral thesis, Taoyen, Taiwan

    Google Scholar 

  13. Chen TJ, Liu GL, Chen L, Yang G, Hu Z, Chi Z-M, Chi Z (2020) Alternative primers are required for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 147:10–17

    Article  CAS  PubMed  Google Scholar 

  14. Chen TJ, Liu GL, Wei X, Wang K, Hu Z, Chi Z, Chi ZM (2019) A multidomain α- glucan synthase 2 (AmAgs2) is the key enzyme for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 150:1037–1045

    Article  PubMed  CAS  Google Scholar 

  15. Chen L, Qian M, Zhang L, Xia J, Bao Y, Wang J, Guo L, Li Y (2018) Co-delivery of doxorubicin and shRNA of Beclin1 by folate receptor targeted pullulan-based multifunctional nanomicelles for combinational cancer therapy. RSC Adv 8:17710–17722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng KC, Demirci A, Catchmark MJ (2009) Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Appl Microbiol Biotechnol 86:853–861

    Article  PubMed  CAS  Google Scholar 

  17. Cheng KC, Demirci A, Catchmark MJ (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456

    Article  CAS  PubMed  Google Scholar 

  18. Cheng KC, Demirci A, Catchmark JM (2011) Continuous pullulan fermentation in a biofilm reactor. Appl Microbiol Biotechnol 90:921–927

    Article  CAS  PubMed  Google Scholar 

  19. Cheng KC, Demirci A, Catchmark JM (2011) Evaluation of medium composition and cultivation parameters on pullulan production by Aureobasidium pullulans. Food Sci Technol Int 17:99–109

    Article  CAS  PubMed  Google Scholar 

  20. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44

    Article  CAS  PubMed  Google Scholar 

  21. Chi Z, Su CD, Lu WD (2007) A new exopolysaccharide produced by marine Cyanothece sp. 113. Bioresour Technol 98:1329–1332

    Article  CAS  PubMed  Google Scholar 

  22. Chi Z, Zhao S (2003) Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast. Enzyme Microb Technol 33:206–211

    Article  CAS  Google Scholar 

  23. Choudhury AR, Sharma N, Prasad G (2012) De-oiled jatropha seed cake is a useful nutrient for pullulan production. Microb Cell Fact 11:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delben F, Forabosco A, Guerrini M, Liut G, Torri G (2006) Pullulans produced by strains of Cryphonectria parasitica—II. Nuclear magnetic resonance evidence. Carbohydr Polym 63:545–554

    Article  CAS  Google Scholar 

  25. Duan X, Chi Z, Wang L, Wang X (2008) Influence of different sugars on pullulan production and activities of α- phosphoglucose mutase, UDPG pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym 73:587–593

    Article  CAS  PubMed  Google Scholar 

  26. Finkelman MAJ, Vardanis A (1982) Simplified microassay for pullulan synthesis. Appl Environ Microbiol 43:483–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fogg SR, Patel D, Orr CL (2012) Naturally derived polymeric hair fixative systems with pullulan and mascara compositions comprising the same, US Patent No 36015410P

    Google Scholar 

  28. Forabosco A, Bruno G, Sparapano L, Liut G, Marino D, Delben F (2006) Pullulans produced by strains of Cryphonectria parasitica—I. Production and characterization of the exopolysaccharides. Carbohydr Polym 63:535–544

    Article  CAS  Google Scholar 

  29. Fraser CG, Jennings HJ (1971) A glucan from Tremella mesenterica NRRL-Y6158. Can J Chem 49:1804–1807

    Article  CAS  Google Scholar 

  30. Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ, Lennon J, Chung MT, Paik K, Nimpf J (2014) Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med 3:1079–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gibbs PA, Seviour RJ (1996) Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch? Appl Biochem Biotechnol 46:503–510

    CAS  Google Scholar 

  32. Glassey J, Ward AC (2015) Solid state fermentation. In: diversity, dynamics and functional role of actinomycetes on European smear ripened cheese. Springer, Cham, pp 217–225

    Google Scholar 

  33. Goksungur Y, Uzunogullari P, Dagbagli S (2011) Optimization of pullulan production from hydrolysed potato starch waste by response surface methodology. Carbohydr Polym 83:1330–1337

    Article  CAS  Google Scholar 

  34. Gounga ME, Xu SY, Wang Z, Yang WG (2008) Effect of whey protein isolate-pullulan edible coatings on the quality and shelf-life of freshly roasted and freeze-dried Chinese chestnut. J Food Sci 73:151–161

    Article  CAS  Google Scholar 

  35. Grigoras AG (2019) Drug delivery systems using pullulan, a biocompatible polysaccharide produced by fungal fermentation of starch. Environmental chemistry for a sustainable world, pp 99–141

    Google Scholar 

  36. Haghighatpanah N, Mirazee H, Khodaiyan F, Kennedy JF, Aghakhani A, Hosseini SS, Jahanbin K (2020) Optimization and characterization of pullulan produced by a newly identified strain of Aureobasidium pullulans. Int J Biol Macromol 152:305–313

    Article  CAS  PubMed  Google Scholar 

  37. Hamidi M, Kennedy JF, Khodaiyan F, Mousavi Z, Hossein SS (2019) Production optimization, characterization and gene expression of pullulan from a new strain of Aureobasidium pullulan. Int J Biol Macromol 138:725–735

    Article  CAS  PubMed  Google Scholar 

  38. Hansen GH, Lubeck M, Frisvad JC, Lubeck PS, Andersen B (2015) Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. Process Biochem 50:1327–1341

    Google Scholar 

  39. Hasa Y, Tazaki H, Ohnishi M, Oda Y (2006) Preparation of antisticking substance for cooked noodles by fungal hydrolysis of potato pulp. Food Biotechnol 20:263–274

    Article  CAS  Google Scholar 

  40. Heo S, Hwang HS, Jeong KN (2018) Skin protection efficacy from UV irradiation and skin penetration property of polysaccharide- benzophenone conjugates as a sunscreen agent. Carbohydr Polym 195:534–541

    Article  CAS  PubMed  Google Scholar 

  41. Hijiya H, Shiosaka M (1975) Process for the preparation of food containing pullulan and amylase. US Patent Office, Pat. No. 3872228

    Google Scholar 

  42. Huang L, Wang Y, Ling X, Chaurasiya B, Yang C, Du Y, Tu J, Xiong Y, Sun C (2017) Efficient delivery of paclitaxel into ASGPR over-expressed cancer cells using reversibly stabilized multifunctional pullulan nanoparticles. Carbohydr Polym 159:178–187

    Article  CAS  PubMed  Google Scholar 

  43. Ishikawa H, Jo J-I, Tabata Y (2012) Liver anti-fibrosis therapy with mesenchymal stem cells secreting hepatocyte growth factor. J Biomater Sci Polym Ed 23:2259–2272

    Article  CAS  PubMed  Google Scholar 

  44. Iyer A, Mody KH, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Poll Bull 50:340–343

    Article  CAS  Google Scholar 

  45. Jiang H, Xue SJ, Li YF, Liu GL, Chi ZM, Hu Z (2018) Efficient transformation of sucrose into high pullulan concentrations by Aureobasidium melanogenum TN1-2 isolated from a natural honey. Food Chem 257:29–35

    Article  CAS  PubMed  Google Scholar 

  46. Kachhawa DK, Bhattacharjee P, Singhal RS (2003) Studies on downstream processing of pullulan. Carbohydr Polym 52:25–28

    Article  CAS  Google Scholar 

  47. Kato T, Katsuki T, Takahashi A (1984) Static and dynamic solution properties of pullulan in a dilute-solution. Macromolecules 17:1726–1730

    Google Scholar 

  48. Kim JH, Kim MR, Lee JH, Lee JW, Kim SK (2000) Production of high molecular weight pullulan by Aureobasidium pullulans using glucosamine. Biotechnol Lett 22:987–990

    Article  CAS  Google Scholar 

  49. Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117

    Article  CAS  PubMed  Google Scholar 

  50. Lavergne M, Derkaoui M, Delmau C, Letourneur D, Uzan G, Le Visage C (2012) Porous polysaccharide-based scaffolds for human endothelial progenitor cells. Macromol Biosci 12:901–910

    Article  CAS  PubMed  Google Scholar 

  51. Lazaridou A, Roukas T, Biliaderis CG, Vaikousi H (2002) Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in stirred tank reactor under varying agitation. Enzyme Microbial Technol 31:122–132

    Article  CAS  Google Scholar 

  52. Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473

    Article  CAS  PubMed  Google Scholar 

  53. Leathers TD (1987) In: Kaplan DL (ed) First materials biotechnology symposium. Natick, US Army, pp 175–185

    Google Scholar 

  54. Leathers TD, Nofsinger GW, Kurtzman CP, Bothast RJ (1988) Pullulan production by color variant strains of Aureobasidium pullulans. J Ind Microbiol 3:231–239

    Article  Google Scholar 

  55. Lee KY, Yoo YJ (1993) Optimization of pH for high molecular weight pullulan. Biotechnol Lett 15:1021–1024

    Article  CAS  Google Scholar 

  56. Li H, Cui Y, Sui J, Liang J, Fan Y, Zhang X (2015) Efficient delivery of DOX to nuclei of hepatic carcinoma cells in the subcutaneous tumor model using pH-sensitive pullulan-DOX conjugates. ACS Appl Mater Interfaces 7:15855–15865

    Article  CAS  PubMed  Google Scholar 

  57. Li T, Song X, Weng C, Wang X, Wu J, Sun L, Gong X, Zeng W-N, Yang L, Chen C (2018) Enzymatically crosslinked and mechanically tunable silk fibroin/pullulan hydrogels for mesenchymal stem cells delivery. Int J Biol Macromol 115:300–307

    Article  PubMed  CAS  Google Scholar 

  58. Li BX, Zhang N, Peng Q, Yin T, Guan FF, Wang GL, Li Y (2009) Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl Microbiol Biotechnol 84:293–300

    Article  CAS  PubMed  Google Scholar 

  59. Liu NN, Chi Z, Wang QQ, Hon J, Liu GL, Hu Z (2017) Simultaneous production of both high molecular weight pullulan and oligosaccharides by Aureobasidium melanogenum P16 isolated from a mangrove ecosystem. Int J Biol Macromol 102:1016–1024

    Article  CAS  PubMed  Google Scholar 

  60. Liu S, Liu YJ, Feng Y, Li B, Cui Q (2019) Construction of consolidated bio-saccharification biocatalyst and process optimization for highly efficient lignocellulose solubilization. Biotechnol Biofuels 12:35

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu G, Zhao X, Chen C, Chi Z, Zhang Y, Cui Q, Chi Z (2020) Robust production of pigment- free pullulan from lignocellulosic hydrolysate by a new fungus co-utilizing glucose and xylose. Carbohydr Polym 241:2–6

    Article  Google Scholar 

  62. Liu Y, Wang Y, Zhang C, Zhou P, Liu Y, An T, Sun D, Zhang N, Wang Y (2014) Core–shell nanoparticles based on Pullulan and Poly(β-amino) ester for hepatoma-targeted codelivery of gene and chemotherapy agent. ACS Appl Mater Interfaces 21:18712–18720

    Google Scholar 

  63. Liu S, Li B, Liu YJ, Feng Y, Cui Q (2020) Consolidated bio-saccharification: leading lignocellulose bioconversion into the real world. Biotechnol Adv 107535

    Google Scholar 

  64. Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotech 45:202–211

    Article  CAS  PubMed  Google Scholar 

  65. Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotech 16:577–583

    Article  CAS  PubMed  Google Scholar 

  66. Ma ZC, Liu NN, Chi Z, Liu GL, Chi ZM (2015) Genetic modification of the marine-isolated yeast Aureobasidium melanogenum P16 for efficient pullulan production from inulin. Mar Biotechnol 17:511–522

    Article  CAS  Google Scholar 

  67. Madi NS, Harvey LM, Mehlert A, McNeil B (1997) Synthesis of two distinct exopolysaccharide fractions by cultures of the polymorphic fungus Aureobasidium pullulans. Carbohydr Polym 32:307–314

    Article  CAS  Google Scholar 

  68. Madi NS, McNeil B, Harvey LM (1996) Influence of culture pH and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans. J Chem Technol Biotechnol 66:343–350

    Article  Google Scholar 

  69. Manzoni M, Rollini M (2001) Isolation and characterization of the exopolysaccharide produced by Daedalea quercina. Biotechnol Lett 23:1491–1497

    Article  CAS  Google Scholar 

  70. Matsunaga H, Tsuji K, Watanabe M (1978) Coated seed containing pullulan-based resin used as binder. US Patent Office, Pat. No. 4067141

    Google Scholar 

  71. Miller GL (1959) Use of DNS reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  72. Mirazee H, Khodaiyan F, Kennedy JF, Hosseini SS (2020) Production, optimization and characterization of pullulan from sesame seed oil cake as a new substrate by Aureobasidium pullulans. Carbohydr Polym Tech App 1:1–5

    Google Scholar 

  73. Mishra B, Suneetha V (2014) Biosynthesis and hyper production of pullulan by a newly isolated strain of Aspergillus japonicus-VIT-SB1. World J Microbiol Biotechnol 30:2045–2052

    Article  CAS  PubMed  Google Scholar 

  74. Mishra A, Jha B (2009) Microbial exopolysaccharides. In: Rosenberg E et al (eds) The prokaryotes-applied bacteriology and biotechnology, pp 180–192

    Google Scholar 

  75. Mishra B, Zamare D, Manikanta A (2018) Selection and utilization of agro-industrial waste for biosynthesis and hyper-production of pullulan: a review. In: Varjani SJ et al (eds) Biosynthetic technology and environmental challenges, energy, environment and sustainability, pp 80–103

    Google Scholar 

  76. Miyaka T (1979) Shaped matters of tobaccos and process for preparing the same. Canadian Patent Office, Pat. No. 1049245

    Google Scholar 

  77. NithyaBalaSundari S, Nivedita V, Chakravarthy M, Srisowmeya G, Usha Anthony, Dev GN (2007) Characterization of microbial polysaccharides and prebiotic enrichment of wheat bread with pullulan. LWT Food Sci Tech 122:2–5

    Google Scholar 

  78. NithyaBalaSundari S, Nivedita V, Chakravarthy M, Srisowmeya G, Antony U, Dev GN (2020) Characterization of microbial polysaccharides and prebiotic enrichment of wheat bread with pullulan. LWT—Food Sci Tech 122:2–5. https://doi.org/10.1016/j.lwt.2019.109002

  79. Niu B, Shao P, Chen H, Sun P (2019) Structural and physiochemical characterization of novel hydrophobic packaging films based on pullulan derivatives for fruits preservation. Carbohydr Polym 208:76–284

    Article  CAS  Google Scholar 

  80. Okada K, Yoneyama M, Mandai T, Aga H, Sakai S, Ichikawa T (1990) Digestion and fermentation of pullulan. J Jpn Soci Nutri Food Sci 43:23–29

    Article  CAS  Google Scholar 

  81. Oku T, Yamada K, Hosoya N (1979) Effect of pullulan and cellulose on the gastrointestinal tract of rats. Nutr Food Sci 32:235–241

    CAS  Google Scholar 

  82. Orr D, Zheng W, Campbell BS, McDougall BM, Seviour RJ (2009) Culture conditions affecting the chemical composition of the exopolysaccharide synthesized by the fungus Aureobasidium pullulans. J Appl Microbiol 107:691–698

    Article  CAS  PubMed  Google Scholar 

  83. Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol 97:1822–1827

    Article  CAS  PubMed  Google Scholar 

  84. De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  85. Pollock TJ (1992) Isolation of new Aureobasidium strains that produce high-molecular-weight pullulan with reduced pigmentation. Soc Ind Microbiol News 42:147–156

    Google Scholar 

  86. Pometto AL III, Demirci A, Johnson KE (1997) Immobilization of microorganisms on a support made of synthetic polymer and plant material. US Patent No. 5595893

    Google Scholar 

  87. Popescu RA, Tăbăran FA, Bogdan S, Fărcăṣanu A, Purdoiu R, Magyari K, Vulpoi A, Dreancă A, Sevastre B, Simon S (2019) Bone regeneration response in an experimental long bone defect orthotopically implanted with alginate-pullulanglass-ceramic composite scaffolds. J Biomed Mater Res B Appl Biomater 108:1129–1140

    Article  PubMed  CAS  Google Scholar 

  88. Radulovic MD, Cvetkovic OG, Nikolic SD, Dordevic DS, Makovljevic JD, Vrvic M (2008) Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate. Bioresour Technol 99:6673–6677

    Article  CAS  PubMed  Google Scholar 

  89. Ray RC, Moorthy SN (2007) Exopolysaccharide (pullulan) production from cassava starch residue by Aureobasidium pullulan strain MTCC 1991. J Sci Ind Res 66:252–255

    CAS  Google Scholar 

  90. Raychaudhuri R, Naik S, Shreya AB, Kandpal N, Pandey A, Kalthur G, Mutalik S (2020) Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: synthesis, nanoformulations and toxicological perspective. Int J of biol macromol 161:1189–1205

    Article  CAS  Google Scholar 

  91. Reis RA, Tischer CA, Gorrin PA, Iacomini M (2002) A new pullulan and a branched (1→3)-, (1→6)-linked β-glucan from the lichenised ascomycete Teloschistes flavicans. FEMS Microbiol Lett 210:1–5

    CAS  PubMed  Google Scholar 

  92. Rekha MR, Sharma CP (2007) Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs 20:116–121

    Google Scholar 

  93. Ribot EJ, Tournier C, Aid-Launais R, Koonjoo N, Oliveira H, Trotier AJ, Rey S, Wecker D, Letourneur D, Vilamitjana JA (2017) 3D anatomical and perfusion MRI for longitudinal evaluation of biomaterials for bone regeneration of femoral bone defect in rats. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  94. Roukas TC (1999) Pullulan production from brewery wastes by Aureobasidium pullulans. World J Microbiol Biotechnol 15:447–450

    Article  CAS  Google Scholar 

  95. Roukas T, Mantzouridou F (2001) Effect of aeration rate on pullulan production and fermentation broth rheological properties in an airlift reactor. J Chem Technol Biotechnol 76:371–376

    Article  CAS  Google Scholar 

  96. Sasaki Y, Asayama W, Niwa T, Sawada S, Ueda T, Taguchi H, Akiyoshi K (2011) Amphiphilic polysaccharide nanogels as artificial chaperones in cell-free protein synthesis. Macromol Biosci 11:814–820

    Article  CAS  PubMed  Google Scholar 

  97. Schuster R, Wenzig E, Mersmann A (1993) Production of the fungal exopolysaccharide pullulan by batch-wise and continuous fermentation. Appl Microbiol Biotechnol 39:155–158

    Article  CAS  Google Scholar 

  98. Shin YC, Kim YH, Lee HS, Cho SJ, Byun SM (1987) Production of exopolysaccharide pullulan from inulin by a mixed culture of Aureobasidium pullulans and Kluyveromyces fragilis. Biotechnol Lett 9:621–624

    Article  CAS  Google Scholar 

  99. Shingel KI (2004) Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide. Carbohydr Res 339:447–460

    Article  CAS  PubMed  Google Scholar 

  100. Shingel KI, Petrov PT (2002) Behavior of γ-ray-irradiated pullulan in aqueous solutions of cationic (cetyltrimethylammonium hydroxide) and anionic (sodium dodecyl sulfate) surfactants. Colloid Polym Sci 280:176–182

    Article  CAS  Google Scholar 

  101. Simon L, Caye-Vaugien C, Bouchonneau M (1993) Relation between pullulan production, morphological state and growth conditions in Aureobasidium pullulans: new observations. J Gen Microbiol 139:979–985

    Article  CAS  Google Scholar 

  102. Singh RS, Kaur N, Pandey A, Kennedy JF (2020) Hyper production of pullulan from de-oiled rice bran by Aureobasidium pullulans in a stirred tank reactor and its characterization. Biores Tech reports 11:1–5

    Google Scholar 

  103. Singh RS, Kaura N, Kennedy JF (2015) Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydr Polym 123:190–207

    Article  CAS  PubMed  Google Scholar 

  104. Singh RS, Saini GK (2007) Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp. Bioresour Technol 99:3896–3899

    Article  PubMed  CAS  Google Scholar 

  105. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531

    Article  CAS  PubMed  Google Scholar 

  106. Singh RS, Singh H, Saini GK (2009) Response surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1. Appl Biochem Biotechnol 152:42–53

    Article  CAS  PubMed  Google Scholar 

  107. Srikanth S, Swathi M, Tejaswini M, Sharmila G, Muthukumaran C, Jaganathan M (2014) Statistical optimization of molasses based exopolysaccharide and biomass production by Aureobasidium pullulans MTCC 2195. Biocatal Agri Biotechnol 3:7–12

    Article  Google Scholar 

  108. Sugumaran KR, Ponnusami V (2017) Review on production, downstream processing and characterization of microbial pullulan. Carbohydr Polym 173:573–591

    Article  CAS  Google Scholar 

  109. Sugumaran KR, Shobana P, Mohan Balaji P, Ponnusami V, Gowdhaman D (2014) Statistical optimization of pullulan production from Asian palmkernel and evaluation of its properties. Int J Biol Macromol 66:229–235

    Google Scholar 

  110. Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38:190–197

    Article  CAS  PubMed  Google Scholar 

  111. Tamayo MZ, Choudat L, Aid-Launais R, Thibaudeau O, Louedec L, Letourneur D, Gueguen V, Meddahi-Pellé A, Couvelard A, Pavon-Djavid G (2019) Astaxanthin complexes to attenuate muscle damage after in vivo femoral ischemia-reperfusion. Marine Drugs 17:354

    Article  CAS  Google Scholar 

  112. Tsujisaka Y, Mitsuhashi M (1993) Pullulan. In: Whistler RL, BeMiller JN (ed) Academic, San Diego, pp 447–460

    Google Scholar 

  113. Ueda S, Fujita K, Komatsu K, Nakashima Z (1963) Polysaccharide produced by the genus Pullularia I. Production of polysaccharide by growing cells. Appl Microbiol 11:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Waksman N, De Lederkremer RM, Cerezo AS (1977) The structure of an α-D-glucan from Cyttaria harioti Fischer. Carbohydr Res 59:505–515

    Article  CAS  Google Scholar 

  115. Wang D, Xiaomin J, Donghai Z, Gongyuan W (2014) Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans. Bioresource Technol 164:12–19

    Google Scholar 

  116. West TP (2000) Exopolysaccharide production by entrapped cells of the fungus Aureobasidium pullulans ATCC 201253. J Basic Microbiol 40:5–6

    Article  Google Scholar 

  117. West TP, Strohfus B (2001) Polysaccharide production by immobilized Aureobasidium pullulans cells in batch bioreactors. Microbiol Res 156:285–288

    Article  CAS  PubMed  Google Scholar 

  118. Wu S, Chen H, Jin Z, Tong Q (2010) Effect of two-stage temperature on pullulan production by Aureobasidium pullulans. World J Microbiol Biotechnol 26:737–741

    Article  CAS  Google Scholar 

  119. Wu S, Jin Z, Tong Q, Chen H (2009) Sweet potato: a novel substrate for pullulan production by Aureobasidium pullulans. Carbohydr Polym 76:645–649

    Article  CAS  Google Scholar 

  120. Xia J, Zhang L, Qian M, Bao Y, Wang J, Li Y (2017) Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells. J Colloid Interface Sci 498:170–181

    Article  CAS  PubMed  Google Scholar 

  121. Youssef F, Roukas T, Biliaderis CG (1999) Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem 34:355–366

    Article  CAS  Google Scholar 

  122. Yuen S (1974) Pullulan and its applications. Process Biochem 9:7–9

    CAS  Google Scholar 

  123. Zhang RL, Zhang AL, Zhang HZ, Liu J, Tang KY (2019) Preparation and application of dialdehyde pullulan for the construction of gelatin hydrogels. IOP Conf Ser Mater Sci Eng 504:1–5

    Article  Google Scholar 

  124. Zou X, Sun M, Guo X (2006) Quantitative response of cell growth and polysaccharide biosynthesis by the medicinal mushroom Phellinus linteus to NaCl in the medium. World J Microbiol Biotechnol 22:1129–1133

    Article  CAS  Google Scholar 

  125. Ürküt Z, Dağbağli S, Göksungur Y (2007) Optimization of pullulan production using Ca-alginate-immobilized Aureobasidium pullulans by response surface methodology. J Chem Technol Biotechnol 82:837–846

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashwati Ghosh Sachan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, S., Shreshtha, I., Sachan, S.G. (2021). Pullulan: Biosynthesis, Production and Applications. In: Nadda, A.K., K. V., S., Sharma, S. (eds) Microbial Exopolysaccharides as Novel and Significant Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-75289-7_6

Download citation

Publish with us

Policies and ethics