Skip to main content

LD-Pumped Kilo-Joule-Class Solid-State Laser Technology

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XVI

Part of the book series: Topics in Applied Physics ((TAP,volume 141))

  • 728 Accesses

Abstract

In this chapter, we report our latest work on the technical development of the cryogenically cooled Yb:YAG-ceramics laser as scalable technology toward achievement of repetitive kilo-joule-class lasers. In our first trial, we obtain a high small signal gain of 20.4 with a high stored energy of 149.0 J using a conductively side-cooled Yb:YAG ceramic multi-disk laser amplifier operating at 100-K cooling temperature. In the second trial, we obtain 117-J nanosecond pulsed laser output with a cryogenic-helium-gas face-cooled Yb:YAG ceramic multi-disk laser amplifier. In this study, we obtain 42.3% energy-extraction efficiency from the energy stored in the Yb:YAG ceramic disks. We also determined the specifications of the face-cooled laser amplifier designed for repetitive operation by flowing helium gas on the end faces of the Yb:YAG ceramic disks. The feasibility of a practical design for kilo-joule-class diode pumped solid state lasers with a cryogenically cooled Yb:YAG ceramic disks was demonstrated by the developed high-gain and high-efficiency laser technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T.H. Mainman, Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  2. F.J. McClung, R.W. Hellwarth, J. Appl. Phys. 33, 828 (1962)

    Article  ADS  Google Scholar 

  3. H.W. Mocker, R.J. Collins, Appl. Phys. Lett. 7, 270 (1965)

    Article  ADS  Google Scholar 

  4. A.J. DeMaria, D.A. Stetser, H. Heynau, Appl. Phys. Lett. 8, 174 (1966)

    Article  ADS  Google Scholar 

  5. D.A. Stetser, A.J. DeMaria, App. Phys. Lett. 9, 118 (1966)

    Article  ADS  Google Scholar 

  6. M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)

    Article  ADS  Google Scholar 

  7. G. Brumfiel, Nature 491, 170 (2012)

    Article  ADS  Google Scholar 

  8. O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, E.L. Dewald, T.R. Dittrich, T. Döppner, D.E. Hinkel, L.F. Berzak Hopkins, J.L. Kline, S. Le Pape, T. Ma, A.G. MacPhee, J.L. Milovich, A. Pak, H.-S. Park, P.K. Patel, B.A. Remington, J.D. Salmonson, P.T. Springer, R. Tommasini, Nature 506, 343 (2014)

    Google Scholar 

  9. D. Strickland, G. Mourou, Opt. Commun. 56, 291 (1985)

    Article  Google Scholar 

  10. S. Wills, Opt. Photonics News 31, 30 (2020)

    ADS  Google Scholar 

  11. R.L. Byer, Science 239, 742 (1988)

    Article  ADS  Google Scholar 

  12. A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, E. Utterback, Fusion Sci. 52, 383 (2007)

    Article  Google Scholar 

  13. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, T. Kanabe, Opt. Lett. 33, 1711 (2008)

    Article  ADS  Google Scholar 

  14. P. Mason, M. Divoky, K. Ertel, J. Pilar, T. Butcher, M. Manus, S. Banerjee, J. Phillips, J. Smith, M.D. Vido, A. Lucianetti, C. Hernandez-Gomez, C. Edwards, T. Mocek, J. Collier, Optica 4, 438 (2017)

    Article  ADS  Google Scholar 

  15. http://www.nedo.go.jp/koubo/CD3_100053.html

  16. T. Sekine, Y. Takeuchi, T. Kurita, Y. Hatano, Y. Muramatsu, Y. Mizuta, Y. Kabeya, Y. Tamaoki, Y. Kato, Proc. SPIE 10082, 100820U (2017)

    Article  Google Scholar 

  17. L.M. Frantz, J.S. Nodvik, J. Appl. Phys. 34, 2346 (1963)

    Article  ADS  Google Scholar 

  18. T. Sekine, T. Kurita, M. Kurata, Y. Hatano, Y. Muramatsu, T. Morita, Y. Kabeya, T. Iguchi, T. Watari, R. Yoshimura, Y. Tamaoki, Y. Takeuchi, Y. Mizuta, K. Kawai, Y. Zheng, Y. Kato, T. Suzuki, N. Kurita, T. Kawashima, S. Tokita, J. Kawanaka, N. Ozaki, Y. Hironaka, K. Shigemori, R. Kodama, R. Kuroda, E. Miura, submitted to High Energy Density Physics

    Google Scholar 

Download references

Acknowledgements

A part of this report is based on the results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sekine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sekine, T., Kurita, N., Kawashima, T. (2021). LD-Pumped Kilo-Joule-Class Solid-State Laser Technology. In: Yamanouchi, K., Midorikawa, K., Roso, L. (eds) Progress in Ultrafast Intense Laser Science XVI. Topics in Applied Physics, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-030-75089-3_9

Download citation

Publish with us

Policies and ethics