Skip to main content

LIENE: Lifetime Enhancement for 6LoWPAN Network Using Clustering Approach Use Case: Smart Agriculture

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1404))

Included in the following conference series:

Abstract

The Internet of Things (IoT) is one of the largest technological evolutions of computing. With the rapid development of communication, there was a tremendous growth of IoT technology across various fields. IoT devices might be resource-constrained like sensors, actuators, and embedded devices with the IEEE 802.15.4. IoT enables widespread and ubiquitous IoT applications: transportation, logistics, safety and security, health-care, manufacturing, etc. IoT application without sensing devices is impracticable. These sensing devices are battery-powered and constrained by inadequate energy in terms of communication and computation. The optimized communication directs to a more extended network lifetime. Least hop count, enhanced scalability, and connectivity are onerous issues that can be addressed entirely by a clustering mechanism. We conduct comprehensive simulation studies for performance analysis and comparative study of IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). with the conventional approaches in the IoT ecosystem. The experimental outcomes prove that the intended approach outperforms closely-related works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, Y., Wu, L., Yin, G., Li, L., Zhao, H.: A survey on security and privacy issues in IoT. IEEE IoT J. 4(5), 1250–1258 (2017)

    Google Scholar 

  2. Symantec Security Center: Internet Security Threat Report. https://www.symantec.com/security-center/threat-report. Accessed 26 Jan 2021

  3. Information and Technology Market Research Report: Global Internet of Things (IoT) Market. https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#391d26e21480. Accessed 26 Jan 2021

  4. Wang, C.F., Shih, J.D.: Pan: a network lifetime enhancement method for sink relocation and its analysis in WSNs. IEEE Sens. J. 14(6), 1932–1943 (2014)

    Article  Google Scholar 

  5. Xu, L., Collier, R.: A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios. IEEE IoT J. 4(5), 1229–1249 (2017)

    Google Scholar 

  6. Zhang, Q., Zhu, C., Yang, L.T., Chen, Z., Zhao, L., Li, P.: An incremental CFS algorithm for clustering large data in IoTs. IEEE Trans. Industr. Inf. 13(3), 1193–1201 (2017)

    Article  Google Scholar 

  7. Bhale, P., Dey, S., Biswas, S., Nandi, S.: Energy efficient approach to detect sinkhole attack using roving IDS in 6LoWPAN network. In: Rautaray, S.S., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2020. CCIS, vol. 1139, pp. 187–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37484-6_11

    Chapter  Google Scholar 

  8. Contiki: The Open Source Operating System for the Internet of Things: Instant Contiki. http://www.contiki-os.org/start.html. Accessed 26 Jan 2021

  9. COOJA: Network Simulator: Cooja Simulator. http://anrg.usc.edu/contiki/index.php/Cooja_Simulator. Accessed 26 Jan 2021

  10. Bhale, P., Prakash, S., Biswas, S., Nandi, S.: BRAIN: buffer reservation attack PreventIoN using legitimacy score in 6LoWPAN network. In: Rautaray, S.S., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2020. CCIS, vol. 1139, pp. 208–223. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37484-6_12

    Chapter  Google Scholar 

  11. Popat, S.K., Emmanuel, M.: Review and comparative study of clustering techniques. Int. J. Comput. Sci. Inf. Technol. 5(1), 805–812 (2014)

    Google Scholar 

  12. Mukhopadhyay, A.: Maulik: a survey of multiobjective evolutionary clustering. ACM Comput. Sur. (CSUR) 47(4), 1–46 (2015)

    Article  Google Scholar 

  13. Cooper, C., Franklin, D., Ros, M.: A comparative survey of VANET clustering techniques. IEEE Commun. Surv. Tutor. 19(1), 657–681 (2016)

    Article  Google Scholar 

  14. Saxena, A., Prasad, M., Gupta, A., Bharill, N.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)

    Article  Google Scholar 

  15. Dubey, P., Veenadhar, S., Gupta, S.: Survey on energy efficient clustering and routing protocols of WSN. Int. J. Sci. Res. 5(1) (2019)

    Google Scholar 

  16. Kameshwaran, K., Malarvizhi, K.: Survey on clustering techniques in data mining. Int. J. Comput. Sci. 5(2), 2272–2276 (2014)

    Google Scholar 

  17. Wazarkar, S., Keshavamurthy, B.N.: A survey on image data analysis through clustering techniques for real world applications. J. Vis. Commun. Image Represent. 55, 596–626 (2018)

    Article  Google Scholar 

  18. Izakian, H., Pedrycz, W.: Fuzzy clustering of time series data using dynamic time warping distance. Eng. Appl. AI 39, 235–244 (2015)

    Article  Google Scholar 

  19. Al-Shalabi, M., Anbar, M., Wan, T.C.: Fuzzy clustering of time series data using dynamic time warping distance. Electronics 7(8), 136 (2018)

    Article  Google Scholar 

  20. Manjeshwar, A., Agrawal, D.P.: TEEN: a routing protocol for enhanced efficiency in WSNs. In: IPDPS, vol. 1, p. 189 (2001)

    Google Scholar 

  21. Manjeshwar, A., Agrawal, D.P.: APTEEN: a hybrid protocol for efficient routing and comprehensive information retrieval in WSNs. In: Parallel and Distributed Processing Symposium, vol. 3, pp. 0195b–0195b. Citeseer (2002)

    Google Scholar 

  22. Smaragdakis, G., Matta, I., Bestavros, A.: SEP: a stable election protocol for clustered heterogeneous WSNs. Technical report, Boston University (2004)

    Google Scholar 

  23. Islam, M., Matin, M., Mondol, T.: Extended Stable Election Protocol (SEP) for three-level hierarchical clustered heterogeneous WSN, pp. 43–43 (2012)

    Google Scholar 

  24. Tripathi, J., de Oliveira, J.C., Vasseur, J.P.: A performance evaluation study of RPL: routing protocol for low power and lossy networks. In: 2010 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6. IEEE (2010)

    Google Scholar 

  25. Accettura, N., Grieco, L.A., Boggia, G., Camarda, P.: Performance analysis of the RPL routing protocol. In: 2011 IEEE International Conference on Mechatronics, pp. 767–772. IEEE (2011)

    Google Scholar 

  26. Xie, B., Wang, C.: An improved distributed energy efficient clustering algorithm for heterogeneous WSNs. In: Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2017)

    Google Scholar 

  27. Heinzelman, W.R., Chandrakasan, A.: Energy-efficient communication protocol for WSNs. In: 33rd Annual Hawaii international Conference, pp. 10–22. IEEE (2000)

    Google Scholar 

  28. Pradeepkumar, B., Talukdar, K., Choudhury, B., Singh, P.K.: Predicting external rogue access point in IEEE 802.11 b/g WLAN using RF signal strength. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1981–1986. IEEE (2017)

    Google Scholar 

  29. Cheng, L., Niu, J., Luo, C., Shu, L.: Towards minimum-delay and energy-efficient flooding in low-duty-cycle WSNs. Comput. Netw. 134, 66–77 (2018)

    Article  Google Scholar 

  30. Kumar, V., Yadav, S., Kumar, V., Sengupta, J., Tripathi, R., Tiwari, S.: Optimal clustering in Weibull distributed WSNs based on realistic energy dissipation model. In: Pattnaik, P.K., Rautaray, S.S., Das, H., Nayak, J. (eds.) Progress in Computing, Analytics and Networking. AISC, vol. 710, pp. 61–73. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7871-2_7

    Chapter  Google Scholar 

  31. Levis, P., Patel, N., Culler, D.: Trickle: a self-regulating algorithm for code propagation and maintenance in WSNs. In: USENIX/ACM Symposium, vol. 25 (2004)

    Google Scholar 

  32. Wireless Sensor Networks: Tmote-Sky. https://wirelesssensornetworks.weebly.com/blog/tmote-sky. Accessed 26 Jan 2021

  33. Singh, S.K., Kumar, P.: A survey on successors of LEACH protocol. IEEE Access 5, 4298–4328 (2017)

    Article  Google Scholar 

  34. Wei, D., Jin, Y., Vural, S., Moessner, K., Tafazolli, R.: An energy-efficient clustering solution for wireless sensor networks. IEEE Trans. Wirel. Commun. 10(11), 3973–3983 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their helpful feedback that served to improve this paper. The research work has been conducted under Information Security Education and Awareness (ISEA) Project Phase - II. The authors would like to thank MeitY and IIT Guwahati India, for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeepkumar Bhale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhale, P., Biswas, S., Nandi, S. (2021). LIENE: Lifetime Enhancement for 6LoWPAN Network Using Clustering Approach Use Case: Smart Agriculture. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2021. Communications in Computer and Information Science, vol 1404. Springer, Cham. https://doi.org/10.1007/978-3-030-75004-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75004-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75003-9

  • Online ISBN: 978-3-030-75004-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics