Skip to main content

BRAIN: Buffer Reservation Attack PreventIoN Using Legitimacy Score in 6LoWPAN Network

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1139))

Included in the following conference series:

Abstract

Internet of Things (IoT) is a network of tangible objects forming a Low-Power Network with each connected device having limited resources and computing power, and each entrusted with a task of data acquisition and transmission to controller devices or users. IoTs are taking over the networking world fast and are bringing the physical and the virtual world ever closer. The most prominent security threat with IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) is the Buffer Reservation Attack. In this paper, this attack has been extensively described, simulated using Contiki cooja simulator and proposed an energy efficient solution named BRAIN that defend against buffer reservation attack. We observe that the legitimacy score based BRAIN approach is improved by 4–35% packet dropping rate and 36.16% average throughput. Along with it reduces 0.09 mJ CPU Energy Computation (CPUENC), 0.14 mJ Transmission Energy (ETX), and 0.08 mJ Reception Energy (ERX).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ziegler, S., et al.: IoT6 – moving to an IPv6-based future IoT. In: Galis, A., Gavras, A. (eds.) FIA 2013. LNCS, vol. 7858, pp. 161–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38082-2_14

    Chapter  Google Scholar 

  2. El Ksimi, A., Leghris, C.: A new IPv6 security approach for a local network. In: Khoukhi, F., Bahaj, M., Ezziyyani, M. (eds.) AIT2S 2018. LNNS, vol. 66, pp. 17–26. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11914-0_2

    Chapter  Google Scholar 

  3. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  4. Diaz-Rozo, J., Bielza, C., Larrañaga, P.: Clustering of data streams with dynamic gaussian mixture models: an IoT application in industrial processes. IEEE Internet Things J. 5(5), 3533–3547 (2018)

    Article  Google Scholar 

  5. Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., Liotta, A.: An edge-based architecture to support efficient applications for healthcare industry 4.0. IEEE Trans. Ind. Inform. 15(1), 481–489 (2018)

    Article  Google Scholar 

  6. Pradeepkumar, B., Talukdar, K., Choudhury, B., Singh, P.K.: Predicting external rogue access point in IEEE 802.11 b/g WLAN using RF signal strength. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1981–1986. IEEE (2017)

    Google Scholar 

  7. Arış, A., Oktuğ, S.F., Voigt, T.: Security of internet of things for a reliable internet of services. In: Ganchev, I., van der Mei, R.D., van den Berg, H. (eds.) Autonomous Control for a Reliable Internet of Services. LNCS, vol. 10768, pp. 337–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90415-3_13

    Chapter  Google Scholar 

  8. Abdul-Ghani, H.A., Konstantas, D., Mahyoub, M.: A comprehensive IoT attacks survey based on a building-blocked reference model. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 9(3), 355–373 (2018)

    Google Scholar 

  9. Ammar, M., Russello, G., Crispo, B.: Internet of Things: a survey on the security of IoT frameworks. J. Inf. Secur. Appl. 38, 8–27 (2018)

    Google Scholar 

  10. Agrawal, N., Pradeepkumar, B., Tapaswi, S.: Preventing ARP spoofing in WLAN using SHA-512. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–5. IEEE (2013)

    Google Scholar 

  11. Khandelwal, M., Gupta, D.K., Bhale, P.: DoS attack detection technique using back propagation neural network. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1064–1068. IEEE (2016)

    Google Scholar 

  12. Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. Technical report (2007)

    Google Scholar 

  13. Kim, H.: Protection against packet fragmentation attacks at 6LoWPAN adaptation layer. In: 2008 International Conference on Convergence and Hybrid Information Technology, pp. 796–801. IEEE (2008)

    Google Scholar 

  14. Hummen, R., Hiller, J., Wirtz, H., Henze, M., Shafagh, H., Wehrle, K.: 6LoWPAN fragmentation attacks and mitigation mechanisms. In: Proceedings of the Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 55–66. ACM (2013)

    Google Scholar 

  15. Gilad, Y., Herzberg, A.: Fragmentation considered vulnerable: blindly intercepting and discarding fragments. In: Proceedings of the 5th USENIX Conference on Offensive Technologies, p. 2. USENIX Association (2011)

    Google Scholar 

  16. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: security protocols for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)

    Article  Google Scholar 

  17. Hossain, M., Karim, Y., Hasan, R.: SecuPAN: a security scheme to mitigate fragmentation-based network attacks in 6LoWPAN. In: Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, pp. 307–318. ACM (2018)

    Google Scholar 

  18. Contiki: IoT Simulator. http://www.contiki-os.org/start.html. Accessed 15 Aug 2019

  19. Cooja: IoT Simulator. http://anrg.usc.edu/contiki/index.php/Cooja_Simulator. Accessed 15 Aug 2019

  20. Yang, Y., Wu, L., Yin, G., Li, L., Zhao, H.: A survey on security and privacy issues in internet-of-things. IEEE Internet Things J. 4(5), 1250–1258 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their helpful feedback that served to improve this paper. The research work has been conducted under Information Security Education and Awareness (ISEA) Project Phase - II. The authors would like to thank MeitY and IIT Guwahati India, for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeepkumar Bhale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhale, P., Prakash, S., Biswas, S., Nandi, S. (2020). BRAIN: Buffer Reservation Attack PreventIoN Using Legitimacy Score in 6LoWPAN Network. In: Rautaray, S., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2020. Communications in Computer and Information Science, vol 1139. Springer, Cham. https://doi.org/10.1007/978-3-030-37484-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37484-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37483-9

  • Online ISBN: 978-3-030-37484-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics