Skip to main content

Cosmic Shock Waves

  • Chapter
  • First Online:
Intense Shock Waves on Earth and in Space

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 763 Accesses

Abstract

Almost all observed astrophysical phenomena and objects excite powerful shock waves during their inception, evolution and death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The next part of this chapter is written by A. M. Bykov, to whom the author expresses his acknowledgment.

References

  1. Fortov VE (2013) High energy density physics. FIZMATLIT, Moscow [Fortov V. E. Fizika vysokikh plotnostey energii. - M.: FIZMATLIT, 2013 (in Russian)]

    Google Scholar 

  2. Fortov VE (2016) Extreme states of matter. High energy density physics, 2nd edn. Springer, Helderberg

    Google Scholar 

  3. Zel’dovich YB, Raizer YP (2008) Physics of shock waves and high-temperature hydrodynamic phenomena, 3rd edn. Corrected. FIZMATLIT, Moscow [Zel’dovich Ya. B., Raizer Yu. P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy, 3-ye izd., ispr. - M.: FIZMATLIT, 2008 (in Russian)]

    Google Scholar 

  4. Bykov AM, Dolag K, Durret F (2008) Cosmological shock waves. Space Sci Rev 134:119–140

    Google Scholar 

  5. Bykov AM, Paerels FBS, Petrosian V (2008) Equilibration processes in the warm hot intergalactic medium. Space Sci Rev 134:141–153

    Article  ADS  Google Scholar 

  6. Bykov AM, Treumann RA (2011) Fundamentals of collisionless shocks for astrophysical applications. 2. Relativistic shocks. Astron Astrophys Rev 19:42–109

    Google Scholar 

  7. Bykov A, Gehrels N, Krawczynski H, Lemoine M, Pelletier G, Pohl M (2012) Particle acceleration in relativistic outflows. Space Sci Rev 173:309–339

    Google Scholar 

  8. Sironi L, Keshet U, Lemoine M (2015) Relativistic shocks: particle acceleration and magnetization. Space Sci Rev 191:519–544

    Google Scholar 

  9. Weinstein SI, Bykov AM, Toptygin IN (1989) Turbulence, current layers and shock waves in space plasma. Nauka, Moscow [(Weinstein S. I., Bykov A. M., Toptygin I. N. Turbulentnost’, tokovyye sloi i udarnyye volny v kosmicheskoy plazme. - M.: Nauka, 1989 (in Russian)]

    Google Scholar 

  10. Balogh A, Treumann RA (2013) Physics of Collisionless shocks. Space plasma shock waves. Springer, Helderberg

    Google Scholar 

  11. Treumann RA (2009) Fundamentals of collisionless shocks for astrophysical applications. 1. Non-relativistic shocks. Astron Astrophys Rev 19:409–535

    Google Scholar 

  12. Sagdeev RZ (1958) On nonlinearity of rarefied plasma motion in magnetic field. Plasma physics and problem of controlled thermonuclear reactions. In: Leontovich MA (ed), vol 4 USSR AS Publishers, Moscow, p 384 [Sagdeev R. Z. O nelineynykh dvizheniyakh razrezhennoy plazmy v magnitnom pole. Fizika plazmy i problema upravlyayemykh termoyadernykh reaktsiy / Pod red. M. A. Leontovicha. T. 4. - M.: Izd-vo AN SSSR, 1958. S. 384 (in Russian)]

    Google Scholar 

  13. Sagdeev RZ (1964) Collective processes and shock waves in rarefied plasma, problems of plasma theory. Collection of articles. In: Leontovich MA (ed), vol 4 Atomizdat, Moscow [Sagdeev R. Z Kollektivnyye protsessy i udarnyye volny v razrezhennoy plazme, Voprosy teorii plazmy. Sb. statey. Vyp.4 / Pod red. M.A. Leontovicha. - M.: Atomizdat, 1964 (in Russian)]

    Google Scholar 

  14. Korreck KE, Raymond JC, Zurbuchen TH, Ghavamian P (2004) Far ultraviolet spectroscopic explorer observation of the nonradiative collisionless shock in the remnant of SN 1006. Astropys J 615:280–285

    Google Scholar 

  15. Broersen S, Vink J, Miceli M et al (2013) The northwestern ejecta knot in SN 1006. Astron Astrophys 552(A9):6

    Google Scholar 

  16. Raymond JC, Ghavamian P, Sankrit R, Blair WP, Curiel S (2003) Far-ultraviolet spectra of a nonradiative shock wave in the Cygnus loop. Astrophys J 584:770–781

    Google Scholar 

  17. Vink J (2012) Supernova remnants: the X-ray perspective. Astron Astrophys Rev 20:49

    Google Scholar 

  18. Tylka AJ, Malandraki OE, Dorrian G et al (2013) Initial Fe/O enhancements in large, gradual, solar energetic particle events: observations from wind and Ulysses. Solar Phys 285(1–2):251–267

    Google Scholar 

  19. Cummings AC, Stone EC (2007) Composition of anomalous cosmic rays. Space Sci Rev 130:389–399

    Google Scholar 

  20. Korreck KE, Zurbuchen TH, Lepri ST, Raines JM (2007) Heating of heavy ions by interplanetary coronal mass ejection driven collisionless shocks. Astrophys J 659(1):773–779

    Google Scholar 

  21. Scopke N et al (1983) Evolution of ion distributions across the nearly perpendicular bow shock-specularly and non-specularly reflected-gyrating ions. J Geophys Res 88:6121–6136

    Google Scholar 

  22. https://hubblesite.org

  23. Chernin AD (2008) Dark energy and universal antigravitation. Phys Usp 178(3):267 [Chernin A. D. Temnaya energiya i vsemirnoye antityagoteniye // UFN. 2008. T. 178, №3. S. 267 (in Russian)]

    Google Scholar 

  24. Gribanov AA (2008) The basic representations of modern cosmology. FIZMATLIT, Moscow [Gribanov A. A. Osnovnyye predstavleniya sovremennoy kosmologii. - M.: FIZMATLIT, 2008 (in Russian)]

    Google Scholar 

  25. Panasyuk M (2005) Wanderers of the Universe or a big bang echo. Vek-2, Fryazino [Panasyuk M. Stranniki Vselennoy, ili ekho Bol'shogo vzryva. - Fryazino: Vek-2, 2005 (in Russian)]

    Google Scholar 

  26. Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75:1169–1174

    Google Scholar 

  27. Nagano M, Watson AA (2000) Observations and implications of the ultrahigh-energy cosmic rays. Rev Mod Phys 72(3):689–732

    Article  ADS  Google Scholar 

  28. Ptitsyna KV, Troitsky SV (2010) Physical conditions in potential accelerators of ultrahigh energy cosmic rays: updated Hillas plot and radiation-loss constraints. Phys Usp 180(7):723–734 [Ptitsyna K. V., Troitsky S. V. Fizicheskiye usloviya v potentsial'nykh uskoritelyakh kosmicheskikh luchey sverkhvysokikh energiy: obnovlennaya diagramma Khillasa i ogranicheniya iz poter’ na izlucheniye // UFN. 2010. T. 180, №7. S. 723–734 (in Russian)]

    Google Scholar 

  29. Sironi L, Spitkovsky A, Arons J (2013) The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys J 771:54

    Article  ADS  Google Scholar 

  30. Chen P, Tajima T, Takahashi Y (2002) Plasma wakefield acceleration for ultrahigh-energy cosmic rays. Phys Rev Lett 89(16):161101

    Article  ADS  Google Scholar 

  31. Tidman DAD, Krall N (1971) Shock waves in collisionless plasma. Wiley, NY

    Google Scholar 

  32. Landau LD, Lifshits EM (1982) Electrodynamics of continuous media, 2nd edn. Corrected (Phys Math Lit). Nauka, Moscow [Landau L. D., Lifshits E. M. Elektrodinamika sploshnykh sred. 2-ye izd., ispr. - M.: Nauka. Gl. red. fiz.-mat. lit., 1982 (in Russian)]

    Google Scholar 

  33. Zasov AV, Surdin VG (2007) A diversity of galaxies. In: Surdin VG (ed) Astronomy: 21st Century. Vek-2, Fryazino, p 329 [Zasov A. V., Surdin V. G. Raznoobraziye galaktik // Astronomiya XXI vek / Pod red. V. G. Surdina. - Fryazino: Vek-2, 2007. S. 329 (in Russian)]

    Google Scholar 

  34. Blik B, Frank A (2006) Unusual death of usual stars. Almanac “Space”. In: The world of science, Moscow, pp 71–78 [Blik B., Frank A. Neobychnaya smert’ obychnykh zvezd // Al'manakh «Kosmos». - M.: V mire nauki, 2006. S. 71–78 (in Russian)]

    Google Scholar 

  35. Bykov AM, Toptygin IN (2007) Instabilities of a multicomponent plasma with accelerated particles and magnetic field generation in astrophysical objects. Phys Usp 177(2):148–182 [Bykov A. M., Toptygin I. N. Neustoychivosti mnogokomponentnoy plazmy s uskorennymi chastitsami i generatsiya magnitnykh poley v astrofizicheskikh ob"yektakh// UFN. 2007. T. 177, №2. S. 148–182]

    Google Scholar 

  36. Surdin AV (1999) Star production. Editorial URSS, Moscow [Surdin A. V. Rozhdeniye zvezd. - M.: Editorial URSS, 1999 (in Russian)]

    Google Scholar 

  37. Fortov VE, Ivlen AV, Khrapak SA et al (2005) Complex (dusty) plasma: current status open issues, perspectives. Phys Rep 421(1):1–103

    Article  ADS  MathSciNet  Google Scholar 

  38. Fortov VE, Khrapak AG, Khrapak SA et al (2004) Dusty plasma. Phys Usp 174(5):495 [Fortov V. E., Khrapak A. G., Khrapak S. A i dr. Pylevaya plazma // UFN. 2004. T. 174, №5. S. 495 (in Russian)]

    Google Scholar 

  39. Ivanova IN, Imshennik VS, Chechotkin VM (1974) Pulsation regime of the thermonuclear explosion of a star’s dense carbon core. Astrophys Space Sci 31(2):497–514

    Article  ADS  Google Scholar 

  40. Öpik EJ (1953) Stellar associations and supernovae. Irish Astron J 2(8):219–233

    ADS  Google Scholar 

  41. Sonett CP, Abrams IJ (1963) The distant geomagnetic field 3. Disorder and shocks in the magnetopause. J Geophys Res 68:1233–1263

    Google Scholar 

  42. Braginsky SI (1963) Phenomenon of transfer in plasma. In: Leontovich MA (ed) Collection: issues of plasma theory, vol 1. Gosatomizdat, Moscow, p 11 [Braginsky S. I. Yavleniya perenosa v plazme // V sb.: Voprosy teorii plazmy. Vyp. 1 / Pod red. M.A. Leontovicha. - M.: Gosatomizdat, 1963. S. 11 (in Russian)]

    Google Scholar 

  43. Sivukhin DV (1964) Coulomb collisions in fully ionized plasma. In: Leontovich MA (ed) Collection of articles, vol 4. Atomizdat, Moscow [Sivukhin D. V. Kulonovskiye stolknoveniya v polnost'yu ionizovannoy plazme // Sb. statey. Vyp. 4 / Pod red. M.A. Leontovicha. - M.: Atomizdat, 1964 (in Russian)]

    Google Scholar 

  44. Akhiyezer AI, Akhiyezer IA, Polovin RV, Sitenko AG, Stepanov KN (1974) Plasma electrodynamics. In: Akhiyezer AI (ed) Nauka, Moscow [Akhiyezer A. I., Akhiyezer I. A., Polovin R. V., Sitenko A. G., Stepanov K. N. Elektrodinamika plazmy / Pod red. A.I. Akhiyezera. — M.: Nauka, 1974 (in Russian)]

    Google Scholar 

  45. Landau LD, Lifshits EM (1986) Hydrodynamics. Theoretical physics: V. VI, 3rd edn. Revised (Phys Math Lit). Nauka, Moscow [L. D., Lifshits E. M. Gidrodinamika. Teoreticheskaya fizika: T. VI. 3-ye izd., pererab. — M.: Nauka. Gl. red. fiz.-mat. lit., 1986 (in Russian)]

    Google Scholar 

  46. Gringauz KI, Bezrukikh VV, Ozerov VD, Rybchinsky RE (1960) Study of interplanetary ionized gas, energetic electrons and corpuscular sun radiation using three-electrode traps of charged particles at the second soviet space rocket. Rep USSR Acad Sci 131:1301–1304 [Gringauz K. I, Bezrukikh V. V., Ozerov V. D., Rybchinsky R. E. Izucheniye mezhplanetnogo ionizovannogo gaza, energichnykh elektronov i korpuskulyarnogo izlucheniya Solntsa pri pomoshchi trekhelektrodnykh lovushek zaryazhennykh chastits na vtoroy sovetskoy kosmicheskoy rakete // Dokl. AN SSSR. 1960. T. 131. S. 1301–1304 (in Russian)]

    Google Scholar 

  47. Ness NF, Scarce CS, Seek JB (1964) Initial results of the IMP-1 magnetic field experiment. J Geophys Res 69:3531

    Google Scholar 

  48. Kennel CF, Edmiston JP, Hada T (1985) A quarter century of collisionless shock research, collisionless shocks in the heliosphere: a tutorial review (A87-25326 09–92). American Geophysical Union, Washington, DC, p 1

    Google Scholar 

  49. Burgess MD (2015) Scholer collisionless shocks in space plasmas. Cambridge University Press

    Google Scholar 

  50. Schaeffer DB, Winske D, Larson JD, Cowee MM, Constantin CG, Bondarenko AS, Clark SE, Niemann C (2017) On the generation of magnetized collisionless shocks in the large plasma device. Phys Plasmas 24:041405

    Article  ADS  Google Scholar 

  51. Huntington CM, Manuel MJ-E, Ross JS, Wilks SC, Fiuza F, Rinderknecht HG, Park H-S, Gregori G, Higginson DP, Park J, Pollock BB, Remington BA, Ryutov DD, Ruyer C, Sakawa Y, Sio H, Spitkovsky A, Swadling GF, Takabe H, Zylstra AB (2017) Magnetic field production via the Weibel instabllity in interpenetrating plasma flows. Phys Plasmas 24:041410

    Article  ADS  Google Scholar 

  52. Bedsel C, Landgdon A (1989) Plasma physics and numerical simulation. Energoatomizdat, Moscow [Bedsel C., Landgdon A. Fizika plazmy i chislennoye modelirovaniye. - M.: Energoatomizdat, 1989 (in Russian)]

    Google Scholar 

  53. Hockney RW, Eastwood JW (1989) Computer simulations using particles. Adam Hilger, Bristol

    Google Scholar 

  54. Marcowith A, Bret A, Bykov A et al (2016) The microphysics of collisionless shock waves. Rep Progr Phys 79:046901

    Article  ADS  Google Scholar 

  55. Caprioli D, Pop AR, Spitkovsky A (2015) Simulations and theory of ion injection at nonrelativistic collisionless shocks. Astrophys J Lett 798(2):L28

    Article  ADS  Google Scholar 

  56. Winske D, Quest KB (1988) Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks. J Geophys Res 93:9681–9693

    Google Scholar 

  57. Jones FC, Ellison DC (1991) The plasma physics of shock acceleration. Space Sci Rev 58:259–346

    Article  ADS  Google Scholar 

  58. Kropotina YA, Bykov AM, Krasil’shchikov AM, Levenfish KP (2016) Relaxation of heavy ions in collisionless shock waves in space plasma. J Techn Phys 86(4):40–47 [Kropotina Yu. A., Bykov A. M.., Krasil’shchikov A. M., Levenfish K. P. Relaksatsiya tyazhelykh ionov v besstolknovitel'nykh udarnykh volnakh v kosmicheskoy plazme // Zhurnal tekhnicheskoy fiziki. 2016. T. 86, vyp. 4. S. 40–47 (in Russian)]

    Google Scholar 

  59. Lipatov AS (2002) The hybrid multiscale simulation technology. Springer, Berlin, 403 p

    Google Scholar 

  60. Matthews AP (1994) Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations. J Comput Phys 112(1):102–116

    Google Scholar 

  61. Bell AR (1978) The acceleration of cosmic rays in shock fronts. Monthly Notices R Astron Soc 182:147

    Article  ADS  Google Scholar 

  62. Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. Astrophys J Lett 221:129

    Article  Google Scholar 

  63. Krymsky GF (1977) Regular mechanism of charged particle acceleration at the shock-wave front. Sov Phys Dokl 234:1306 [Krymsky G. F. Regulyarnyy mekhanizm uskoreniya zaryazhennykh chastits na fronte udarnoy volny // DAN SSSR. 1977. T. 234. S. 1306 (in Russian)]

    Google Scholar 

  64. Axford WI, Leer E, Skadron G (1977) The acceleration of cosmic rays by shock waves. Proc 15th Int Cosmic Ray Conf II:132

    Google Scholar 

  65. Malkov MA, Drury LOC (2001) Nonlinear theory of diffusive acceleration of particles. Rep Progr Phys 64:429–481

    Google Scholar 

  66. Bykov AM, Ellison DC, Osipov SM, Vladimirov AE (2014) Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic ray driven instabilities. Astrophys J 789(2):137

    Google Scholar 

  67. Bykov AM, Brandenburg A, Malkov MA, Osipov SM (2013) Microphysics of cosmic ray driven plasma instabllities. Space Sci Rev 178:201

    Article  ADS  Google Scholar 

  68. Bell AR, Lucek SG (2001) Cosmic ray acceleration to very high energy through the nonlinear amplification by cosmic rays of the seed magnetic field. Monthly Notices R Astron Soc 321:433

    Article  ADS  Google Scholar 

  69. Schure KM, Bell AR, Drury LOC, Bykov AM (2012) Diffusive shock acceleration and magnetic field amplification. Space Sci Rev 173:491

    Google Scholar 

  70. Helder EA, Vink J, Bykov AM, Ohira Y, Raymond JC, Terrier R (2012) Observational signatures of particle acceleration in supernova remnants. Space Sci Rev 173:369–431

    Article  ADS  Google Scholar 

  71. Artsimovich LA, Sagdeev RZ (1979) Plasma physics for physicists. Nauka, Moscow [Artsimovich L. A., Sagdeev R. Z. Fizika plazmy dlya fizikov. - M.: Nauka, 1979 (in Russian)]

    Google Scholar 

  72. Velikovich AL, Liberman MA (1987) Shock wave physics in gases and plasma. Nauka, Moscow [Velikovich A. L., Liberman M. A. Fizika udarnykh voln v gazakh i plazme. - M.: Nauka, 1987 (in Russian)]

    Google Scholar 

  73. Raymond JC, Edgar RJ, Ghavamian P, Blair WP (215) Carbon, helium, and proton kinetic temperatures in a cygnus loop shock wave. Astrophys J 805:152

    Google Scholar 

  74. Vink J, Broersen S, Bykov A, Gabici S (2015) On the electron-ion temperature ratio establish by collisionless shocks. Astron Astrophys 579:A13

    Article  ADS  Google Scholar 

  75. Akamatsu H, van Weeren RJ, Ogrean GA, Kawahara H, Stroe A, Sobral D, Hoeft M, Rottgering H, Bruggen M, Kaastra JS (2015) Suzaku X-ray study of the double radio relic galaxy cluster CIZA J2242.8+5301. Astron Astrophys 582:A87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Fortov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fortov, V. (2021). Cosmic Shock Waves. In: Intense Shock Waves on Earth and in Space. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-74840-1_7

Download citation

Publish with us

Policies and ethics