Skip to main content
  • 1467 Accesses

Abstract

Phenolic compounds are made of one or more hydroxyl groups directly attached to one or more aromatic rings. Based on the diverse nature of phenolic compounds in foods, they may be classified into simple phenols, hydroxybenzoic acids, phenolic aldehydes, acetophenone, phenylacetic acids, phenylethanoid, cinnamic acids, cinnamyl aldehydes, cinmamyl alcohols, cinnamyl esters, coumarins, chromones, benzophenones, xanthones, stilbenes, anthraquinones, chalcones, aurones, flavonoids, anthocyanidins, biflavonyls, betacyannins, lignans, lignins, tannins, phlobaphenes, and their glycosides. Phenolic compounds have characteristic physical properties such as melting and boiling points, density, solubility, physical state, color, flavor, and aroma. The diverse chemical structure defines their characteristic chemical properties such as antioxidant properties, acidity, metal complexation, hydrogen bonding, ester formation, glycosylation, ether formation, and oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Bound phenolics in foods, a review. Food Chem 152:46–55

    Article  CAS  PubMed  Google Scholar 

  • Aherne SA, O’Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Zeb A, Ayaz M, Murkovic M (2020) Characterization of phenolic compounds using UPLC–HRMS and HPLC–DAD and anti-cholinesterase and anti-oxidant activities of Trifolium repens L. leaves. Eur Food Res Technol 246(3):485–496

    Article  CAS  Google Scholar 

  • Alnaizy R, Akgerman A (2000) Advanced oxidation of phenolic compounds. Adv Environ Res 4(3):233–244

    Article  Google Scholar 

  • Andrés-Lacueva C, Medina-Remon A, Llorach R, Urpi-Sarda M, Khan N, Chiva-Blanch G, Zamora-Ros R, Rotches-Ribalta M, Lamuela-Raventos RM (2010) Phenolic compounds: chemistry and occurrence in fruits and vegetables. In: de la Rosa LA, Alvarez-Parrilla E, González-Aguilar GA (eds) Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. Blackwell Publishing, Ames, IA, pp 53–80

    Google Scholar 

  • Awika JM, Rooney LW, Waniska RD (2004) Properties of 3-deoxyanthocyanins from Sorghum. J Agric Food Chem 52(14):4388–4394

    Article  CAS  PubMed  Google Scholar 

  • Baggett S, Protiva P, Mazzola EP, Yang H, Ressler ET, Basile MJ, Weinstein IB, Kennelly EJ (2005) Bioactive benzophenones from garcinia xanthochymus fruits. J Nat Prod 68(3):354–360

    Article  CAS  PubMed  Google Scholar 

  • Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, Laganà G, Daglia M, Meneghini S, Nabavi SM (2017) Flavanones: citrus phytochemical with health-promoting properties. Biofactors 43(4):495–506

    Article  CAS  PubMed  Google Scholar 

  • Bartnik M, Facey PC (2017) Glycosides. In: Badal S, Delgoda R (eds) Pharmacognosy: fundamentals, applications and strategy. Academic Press, Boston, MA, pp 101–161

    Chapter  Google Scholar 

  • Baruah JB (2011) Chemistry of phenolic compounds: state of the art. Nova Science Publishers, New York, NY

    Google Scholar 

  • Bhatt LR, Bae MS, Kim BM, Oh G-S, Chai KY (2009) A chalcone glycoside from the fruits of Sorbus commixta Hedl. Molecules 14(12):5323–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges F, Roleira F, Milhazes N, Santana L, Uriarte E (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12(8):887–916

    Article  CAS  PubMed  Google Scholar 

  • Bors W, Michel C (1999) Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies. Free Radic Biol Med 27(11):1413–1426

    Article  CAS  PubMed  Google Scholar 

  • Boucherle B, Peuchmaur M, Boumendjel A, Haudecoeur R (2017) Occurrences, biosynthesis and properties of aurones as high-end evolutionary products. Phytochemistry 142:92–111

    Article  CAS  PubMed  Google Scholar 

  • Castellano G, González-Santander JL, Lara A, Torrens F (2013) Classification of flavonoid compounds by using entropy of information theory. Phytochemistry 93:182–191

    Article  CAS  PubMed  Google Scholar 

  • Castellar R, Obón JM, Alacid M, Fernández-López JA (2003) Color properties and stability of betacyanins from opuntia fruits. J Agric Food Chem 51(9):2772–2776

    Article  CAS  PubMed  Google Scholar 

  • Chen J-J, Ting C-W, Hwang T-L, Chen I-S (2009) Benzophenone derivatives from the fruits of Garcinia multiflora and their anti-inflammatory activity. J Nat Prod 72(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11(2):153–177

    Article  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN (2000) Miscellaneous phenols in foods and beverages – nature, occurrence and dietary burden. J Sci Food Agric 80(7):1126–1137

    Article  CAS  Google Scholar 

  • Clifford MN, Scalbert A (2000) Ellagitannins–nature, occurrence and dietary burden. J Sci Food Agric 80(7):1118–1125

    Article  CAS  Google Scholar 

  • Covas MI, Miró-Casas E, Fitó M, Farré-Albadalejo M, Gimeno E, Marrugat J, De La Torre R (2003) Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans. Drugs Exp Clin Res 29(5–6):203–206

    CAS  PubMed  Google Scholar 

  • Coward L, Smith M, Kirk M, Barnes S (1998) Chemical modification of isoflavones in soyfoods during cooking and processing. Am J Clin Nutr 68(6):1486S–1491S

    Article  CAS  PubMed  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26(8):1001–1043

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Kardono LBS, Tsauri S, Padmawinata K, Pezzuto JM, Kinghorn AD (1991) Phenylacetic acid derivatives and a thioamide glycoside from Entada phaseoloides. Phytochemistry 30(11):3749–3752

    Article  CAS  Google Scholar 

  • Davin LB, Jourdes M, Patten AM, Kim K-W, Vassão DG, Lewis NG (2008) Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 25(6):1015–1090

    Article  CAS  PubMed  Google Scholar 

  • De Heer MI, Mulder P, Korth HG, Ingold KU, Lusztyk J (2000) Hydrogen atom abstraction kinetics from intramolecularly hydrogen bonded ubiquinol-0 and other (poly)methoxy phenols. J Am Chem Soc 122(10):2355–2360

    Article  CAS  Google Scholar 

  • Debarshi Kar M, Sanjay Kumar B, Vivek A (2017) Chalcone derivatives: anti-inflammatory potential and molecular targets perspectives. Curr Top Med Chem 17(28):3146–3169

    Article  CAS  Google Scholar 

  • Dias MM, Machado NFL, Marques MPM (2011) Dietary chromones as antioxidant agents—the structural variable. Food Funct 2(10):595–602

    Article  CAS  PubMed  Google Scholar 

  • Díaz AM, Caldas GV, Blair MW (2010) Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res Int 43(2):595–601

    Article  CAS  Google Scholar 

  • Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Diaz MAN (2018) Anthraquinones: an overview. In: Rahman A (ed) Studies in natural products chemistry, vol 58. Elsevier, Amsterdam, pp 313–338

    Google Scholar 

  • Dignum MJW, van der Heijden R, Kerler J, Winkel C, Verpoorte R (2004) Identification of glucosides in green beans of Vanilla planifolia Andrews and kinetics of vanilla β-glucosidase. Food Chem 85(2):199–205

    Article  CAS  Google Scholar 

  • Dufossé L (2014) Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family. Food Res Int 65:132–136

    Article  CAS  Google Scholar 

  • Dziedzic SZ, Hudson BJF (1983) Polyhydroxy chalcones and flavanones as antioxidants for edible oils. Food Chem 12(3):205–212

    Article  CAS  Google Scholar 

  • Einbond LS, Reynertson KA, Luo X-D, Basile MJ, Kennelly EJ (2004) Anthocyanin antioxidants from edible fruits. Food Chem 84(1):23–28

    Article  CAS  Google Scholar 

  • Elsayed GA, Khalil AK (2018) Facile synthesis of chalcone glycosides isolated from aerial parts of Brassica rapa L. Curr Org Synth 15(3):423–429

    Article  CAS  Google Scholar 

  • Erdemgil FZ, Şanli S, Şanli N, Özkan G, Barbosa J, Guiteras J, Beltrán JL (2007) Determination of pKa values of some hydroxylated benzoic acids in methanol–water binary mixtures by LC methodology and potentiometry. Talanta 72(2):489–496

    Article  CAS  PubMed  Google Scholar 

  • Filipović M, Marković Z, Đorović J, Marković JD, Lučić B, Amić D (2015) QSAR of the free radical scavenging potency of selected hydroxybenzoic acids and simple phenolics. C R Chim 18(5):492–498

    Article  CAS  Google Scholar 

  • Foo LY, Karchesy JJ (1989) Chemical nature of phlobaphenes. In: Hemingway RW, Karchesy JJ, Branham SJ (eds) Chemistry and significance of condensed tannins. Springer, Boston, MA, pp 109–118

    Chapter  Google Scholar 

  • Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci 90(7):2690–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L (2016) Anthraquinones and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar Drugs 14(4):64

    Article  PubMed Central  CAS  Google Scholar 

  • Hackman RM, Polagruto JA, Zhu QY, Sun B, Fujii H, Keen CL (2007) Flavanols: digestion, absorption and bioactivity. Phytochem Rev 7(1):195

    Article  CAS  Google Scholar 

  • Harborne J, Simmonds N (1964) The natural distribution of the phenolic aglycones. In: Biochemistry of phenolic compounds. Academic Press, London, pp 77–127

    Google Scholar 

  • de Heer MI, Korth H-G, Mulder P (1999) Poly methoxy phenols in solution: O–H bond dissociation enthalpies, structures, and hydrogen bonding. J Org Chem 64(19):6969–6975

    Article  CAS  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10):572–584

    Article  CAS  PubMed  Google Scholar 

  • Heleno SA, Martins A, Queiroz MJRP, Ferreira ICFR (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513

    Article  CAS  PubMed  Google Scholar 

  • Hemingway RW, Karchesy JJ (2012) Chemistry and significance of condensed tannins. Springer Science & Business Media, London

    Google Scholar 

  • Hirose M, Takesada Y, Tanaka H, Tamano S, Kato T, Shirai T (1998) Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model. Carcinogenesis 19(1):207–212

    Article  CAS  PubMed  Google Scholar 

  • Hopkinson SM (1969) The chemistry and biochemistry of phenolic glycosides. Q Rev Chem Soc 23(1):98–124

    Article  CAS  Google Scholar 

  • Hostetler GL, Ralston RA, Schwartz SJ (2017) Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 8(3):423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Wang Z, Aalim H, Limwachiranon J, Li L, Duan Z, Ren G, Luo Z (2019) Green recovery of phenolic compounds from rice byproduct (rice bran) using glycerol based on viscosity, conductivity and density. Int J Food Sci Technol 54(4):1363–1371

    Article  CAS  Google Scholar 

  • Jain A, Yang G, Yalkowsky SH (2004) Estimation of melting points of organic compounds. Ind Eng Chem Res 43(23):7618–7621

    Article  CAS  Google Scholar 

  • Janeczko T, Gładkowski W, Kostrzewa-Susłow E (2013) Microbial transformations of chalcones to produce food sweetener derivatives. J Mol Catal B Enzym 98:55–61

    Article  CAS  Google Scholar 

  • Jeremić S, Radenković S, Filipović M, Antić M, Amić A, Marković Z (2017) Importance of hydrogen bonding and aromaticity indices in QSAR modeling of the antioxidative capacity of selected (poly)phenolic antioxidants. J Mol Graph Model 72:240–245

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Doseff AI, Grotewold E (2016) Flavones: from biosynthesis to health benefits. Plants (Basel) 5(2):27

    Article  CAS  Google Scholar 

  • Jiménez C, Riguera R (1994) Phenylethanoid glycosides in plants: structure and biological activity. Nat Prod Rep 11(6):591–606

    Article  PubMed  Google Scholar 

  • Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  • Kamiloglu S, Tomas M, Capanoglu E (2019) Dietary flavonols and O-glycosides. In: Handbook of dietary phytochemicals. Springer Nature Singapore Pte Ltd, Singapore

    Google Scholar 

  • Kamiya K, Hamabe W, Tokuyama S, Satake T (2009) New anthraquinone glycosides from the roots of Morinda citrifolia. Fitoterapia 80(3):196–199

    Article  CAS  PubMed  Google Scholar 

  • Kaneshiro J, Fukui K, Higuchi H, Nohara T (1991) The first isolation of lignan tri- and tetra-glycosides. Chem Pharm Bull 39(6):1623–1625

    Article  Google Scholar 

  • Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA (2013) Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties. Food Chem Toxicol 61:112–120

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Chattopadhyay SK, Tandon S, Sharma S (2012) Large scale extraction of the fruits of Garcinia indica for the isolation of new and known polyisoprenylated benzophenone derivatives. Ind Crop Prod 37(1):420–426

    Article  CAS  Google Scholar 

  • Khadem S, Marles RJ (2010) Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules 15(11):7985–8005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18(6):641–649

    Article  CAS  PubMed  Google Scholar 

  • Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1):1361779–1361779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim D-O, Lee CY (2004) Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr 44(4):253–273

    Article  CAS  PubMed  Google Scholar 

  • Kishor Kumar K, Arul AnanthaKumar A, Ahmad R, Adhikari S, Variyar PS, Sharma A (2010) Effect of gamma-radiation on major aroma compounds and vanillin glucoside of cured vanilla beans (Vanilla planifolia). Food Chem 122(3):841–845

    Article  CAS  Google Scholar 

  • Klick S, Herrmann K (1988) Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry 27(7):2177–2180

    Article  CAS  Google Scholar 

  • Koponen JM, Happonen AM, Mattila PH, Törrönen AR (2007) Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem 55(4):1612–1619

    Article  CAS  PubMed  Google Scholar 

  • Kostova I, Bhatia S, Grigorov P, Balkansky S, Parmar VS, Prasad AK, Saso L (2011) Coumarins as antioxidants. Curr Med Chem 18(25):3929–3951

    Article  CAS  PubMed  Google Scholar 

  • Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6(5):2815–2821

    Article  CAS  PubMed  Google Scholar 

  • Kylli P, Nousiainen P, Biely P, Sipilä J, Tenkanen M, Heinonen M (2008) Antioxidant potential of hydroxycinnamic acid glycoside esters. J Agric Food Chem 56(12):4797–4805

    Article  CAS  PubMed  Google Scholar 

  • Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44(5):1150–1160

    Article  CAS  Google Scholar 

  • Landoni M, Puglisi D, Cassani E, Borlini G, Brunoldi G, Comaschi C, Pilu R (2020) Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins. Sci Rep 10(1):1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    Article  CAS  Google Scholar 

  • Li L, Tsao R, Yang R, Liu C, Young JC, Zhu H (2008) Isolation and purification of phenylethanoid glycosides from Cistanche deserticola by high-speed counter-current chromatography. Food Chem 108(2):702–710

    Article  CAS  PubMed  Google Scholar 

  • Li X-N, Sun J, Shi H, Yu L, Ridge CD, Mazzola EP, Okunji C, Iwu MM, Michel TK, Chen P (2017) Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Res Int 99:755–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liggins J, Bluck LJC, Runswick S, Atkinson C, Coward WA, Bingham SA (2000) Daidzein and genistein contents of vegetables. Br J Nutr 84(5):717–725

    Article  CAS  PubMed  Google Scholar 

  • Likhtenshtein G (2009) Stilbenes: applications in chemistry, life sciences and materials science. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Lin G, Rahim MA, Leeming MG, Cortez-Jugo C, Besford QA, Ju Y, Zhong Q-Z, Johnston ST, Zhou J, Caruso F (2019) Selective metal–phenolic assembly from complex multicomponent mixtures. ACS Appl Mater Interfaces 11(19):17714–17721

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Sun Y, Foo LY, McNabb WC, Molan AL (2000) Phenolic glycosides of forage legume Onobrychis viciifolia. Phytochemistry 55(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Luqman S, Meena A, Singh P, Kondratyuk TP, Marler LE, Pezzuto JM, Negi AS (2012) Neoflavonoids and tetrahydroquinolones as possible cancer chemopreventive agents. Chem Biol Drug Des 80(4):616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyles JT, Negrin A, Khan SI, He K, Kennelly EJ (2014) In vitro antiplasmodial activity of benzophenones and xanthones from edible fruits of garcinia species. Planta Med 80(08/09):676–681

    Article  CAS  PubMed  Google Scholar 

  • Maga JA (1978) Simple phenol and phenolic compounds in food flavor. Crit Rev Food Sci Nutr 10(4):323–372

    Article  CAS  Google Scholar 

  • Mah SH (2019) Chalcones in diets. In: Handbook of dietary phytochemicals. Springer Nature Singapore Pte Ltd, Singapore, pp 1–52

    Google Scholar 

  • Mäkilä L, Laaksonen O, Alanne A-L, Kortesniemi M, Kallio H, Yang B (2016) Stability of hydroxycinnamic acid derivatives, flavonol glycosides, and anthocyanins in black currant juice. J Agric Food Chem 64(22):4584–4598

    Article  PubMed  CAS  Google Scholar 

  • Moawad A, El Amir D (2016) Ginkgetin or isoginkgetin: the dimethylamentoflavone of Dioon edule Lindl. leaves. Eur J Med Plants 16:1–7

    Article  Google Scholar 

  • Möller B, Herrmann K (1983) Quinic acid esters of hydroxycinnamic acids in stone and pome fruit. Phytochemistry 22(2):477–481

    Article  Google Scholar 

  • Nagels L, van Dongen W, de Brucker J, de Pooter H (1980) High-performance liquid chromatographic separation of naturally occurring esters of phenolic acids. J Chromatogr A 187(1):181–187

    Article  CAS  Google Scholar 

  • Natella F, Nardini M, Di Felice M, Scaccini C (1999) Benzoic and cinnamic acid derivatives as antioxidants: structure–activity relation. J Agric Food Chem 47(4):1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Newsome AG, Li Y, van Breemen RB (2016) Improved quantification of free and ester-bound gallic acid in foods and beverages by UHPLC-MS/MS. J Agric Food Chem 64(6):1326–1334

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya M, Efdi M, Inuzuka T, Koketsu M (2010) Chalcone glycosides from aerial parts of Brassica rapa L. ‘hidabeni’, turnip. Phytochem Lett 3(2):96–99

    Article  CAS  Google Scholar 

  • Nollet LM, Gutierrez-Uribe JA (2018) Phenolic compounds in food: characterization and analysis. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Norwitz G, Nataro N, Keliher PN (1986) Study of the steam distillation of phenolic compounds using ultraviolet spectrometry. Anal Chem 58(3):639–641

    Article  CAS  Google Scholar 

  • Ocakoglu D, Tokatli F, Ozen B, Korel F (2009) Distribution of simple phenols, phenolic acids and flavonoids in Turkish monovarietal extra virgin olive oils for two harvest years. Food Chem 113(2):401–410

    Article  CAS  Google Scholar 

  • Okuda T, Yoshida T, Hatano T (1993) Classification of oligomeric hydrolysable tannins and specificity of their occurrence in plants. Phytochemistry 32(3):507–521

    Article  CAS  Google Scholar 

  • Oliveira LL, Carvalho MV, Melo L (2014) Health promoting and sensory properties of phenolic compounds in food. Revista Ceres 61:764–779

    Article  Google Scholar 

  • Orihara Y, Furuya T, Hashimoto N, Deguchi Y, Tokoro K, Kanisawa T (1992) Biotransformation of isoeugenol and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 31(3):827–831

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Yi XM, Zhang SJ, Cheng J, Wang YH, Liu CY, He XJ (2018) Bioactive phenolics from mango leaves (Mangifera indica L.). Ind Crop Prod 111:400–406

    Article  CAS  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg H, Gacon K, Schlich P, Noble AC (1999) Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J Sci Food Agric 79(8):1123–1128

    Article  CAS  Google Scholar 

  • Peres V, Nagem TJ, de Oliveira FF (2000) Tetraoxygenated naturally occurring xanthones. Phytochemistry 55(7):683–710

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Silva A, Odoux E, Brat P, Ribeyre F, Rodriguez-Jimenes G, Robles-Olvera V, García-Alvarado MA, Günata Z (2006) GC–MS and GC–olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans. Food Chem 99(4):728–735

    Article  CAS  Google Scholar 

  • Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough ML (2010) Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 68(10):571–603

    Article  PubMed  Google Scholar 

  • Petruľová-Poracká V, Repčák M, Vilková M, Imrich J (2013) Coumarins of Matricaria chamomilla L.: aglycones and glycosides. Food Chem 141(1):54–59

    Article  PubMed  CAS  Google Scholar 

  • Piao S-J, Qiu F, Chen L-X, Pan Y, Dou D-Q (2009) New stilbene, benzofuran, and coumarin glycosides from Morus alba. Helv Chim Acta 92(3):579–587

    Article  CAS  Google Scholar 

  • Podolyák B, Kun D, Renner K, Pukánszky B (2018) Hydrogen bonding interactions in poly(ethylene-co-vinyl alcohol)/lignin blends. Int J Biol Macromol 107:1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Poole SK, Patel S, Dehring K, Workman H, Poole CF (2004) Determination of acid dissociation constants by capillary electrophoresis. J Chromatogr A 1037(1):445–454

    Article  CAS  PubMed  Google Scholar 

  • Popova AV, Bondarenko SP, Frasinyuk MS (2019) Aurones: synthesis and properties. Chem Heterocycl Compd 55(4):285–299

    Article  CAS  Google Scholar 

  • Quideau S, Jourdes M, Saucier C, Glories Y, Pardon P, Baudry C (2003) DNA topoisomerase inhibitor acutissimin A and other flavano-ellagitannins in red wine. Angew Chem Int Ed 42(48):6012–6014

    Article  CAS  Google Scholar 

  • Ragnar M, Lindgren CT, Nilvebrant N-O (2000) pKa-Values of guaiacyl and syringyl phenols related to lignin. J Wood Chem Technol 20(3):277–305

    Article  CAS  Google Scholar 

  • Rappoport Z (2004) The chemistry of phenols. John Wiley & Sons, New York, NY

    Google Scholar 

  • Ribéreau-Gayon P (1972) Plant phenolics. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Romani A, Campo M, Pinelli P (2012) HPLC/DAD/ESI-MS analyses and anti-radical activity of hydrolyzable tannins from different vegetal species. Food Chem 130(1):214–221

    Article  CAS  Google Scholar 

  • Rúa J, de Arriaga D, García-Armesto MR, Busto F, del Valle P (2017) Binary combinations of natural phenolic compounds with gallic acid or with its alkyl esters: an approach to understand the antioxidant interactions. Eur Food Res Technol 243(7):1211–1217

    Article  CAS  Google Scholar 

  • Saengchantara ST, Wallace TW (1986) Chromanols, chromanones, and chromones. Nat Prod Rep 3:465–475

    Article  CAS  Google Scholar 

  • Sala A, Recio MC, Giner RM, Máñez S, Ríos J-L (2001) New acetophenone glucosides isolated from extracts of Helichrysum italicum with antiinflammatory activity. J Nat Prod 64(10):1360–1362

    Article  CAS  PubMed  Google Scholar 

  • Sanli N, Fonrodona G, Barrón D, Özkan G, Barbosa J (2002) Prediction of chromatographic retention, pKa values and optimization of the separation of polyphenolic acids in strawberries. J Chromatogr A 975(2):299–309

    Article  CAS  PubMed  Google Scholar 

  • Santana-Gálvez J, Jacobo-Velázquez DA (2018) Classification of phenolic compounds. In: Nollet LM, Gutierrez-Uribe JA (eds) Phenolic compounds in food: characterization and analysis. Taylor & Francis Group, LLC, Boca Raton, FL, pp 3–20

    Chapter  Google Scholar 

  • Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2017) Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 22(3):358

    Article  PubMed Central  CAS  Google Scholar 

  • Santos JS, Alvarenga Brizola VR, Granato D (2017) High-throughput assay comparison and standardization for metal chelating capacity screening: a proposal and application. Food Chem 214:515–522

    Article  CAS  PubMed  Google Scholar 

  • Schulze AE, Beelders T, Koch IS, Erasmus LM, De Beer D, Joubert E (2015) Honeybush herbal teas (Cyclopia spp.) contribute to high levels of dietary exposure to xanthones, benzophenones, dihydrochalcones and other bioactive phenolics. J Food Compos Anal 44:139–148

    Article  CAS  Google Scholar 

  • Sengupta PK (2017) Pharmacologically active plant flavonols as proton transfer based multiparametric fluorescence probes targeting biomolecules: perspectives and prospects. In: Geddes CD (ed) Reviews in fluorescence 2016. Springer International Publishing, Cham, pp 45–70

    Chapter  Google Scholar 

  • Shahidi F, Yeo J (2016) Insoluble-bound phenolics in food. Molecules 21(9):1216

    Article  PubMed Central  CAS  Google Scholar 

  • Shen T, Wang X-N, Lou H-X (2009) Natural stilbenes: an overview. Nat Prod Rep 26(7):916–935

    Article  CAS  PubMed  Google Scholar 

  • Shyu Y-S, Hwang LS (2002) Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res Int 35(4):357–365

    Article  CAS  Google Scholar 

  • Skadhauge B, Gruber MY, Thomsen KK, von Wettstein D (1997) Leucocyanidin reductase activity and accumulation of proanthocyanidins in developing legume tissues. Am J Bot 84(4):494–503

    Article  CAS  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E, Trombetta D (2017) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 174(11):1244–1262

    Article  CAS  PubMed  Google Scholar 

  • Soto-Vaca A, Gutierrez A, Losso JN, Xu Z, Finley JW (2012) Evolution of phenolic compounds from color and flavor problems to health benefits. J Agric Food Chem 60(27):6658–6677

    Article  CAS  PubMed  Google Scholar 

  • Sousa A, Araújo P, Azevedo J, Cruz L, Fernandes I, Mateus N, de Freitas V (2016) Antioxidant and antiproliferative properties of 3-deoxyanthocyanidins. Food Chem 192:142–148

    Article  CAS  PubMed  Google Scholar 

  • Stanley WL, Jurd L (1971) Citrus coumarins. J Agric Food Chem 19(6):1106–1110

    Article  CAS  Google Scholar 

  • Sun YN, Li W, Yang SY, Kang JS, Ma JY, Kim YH (2016) Isolation and identification of chromone and pyrone constituents from Aloe and their anti-inflammatory activities. J Funct Foods 21:232–239

    Article  CAS  Google Scholar 

  • Swain T, Bate-Smith E (1962) Flavonoid compounds. In: Florkin M, Mason HS (eds) Comparative biochemistry, vol 3. Elsevier, New York, NY, pp 755–809

    Chapter  Google Scholar 

  • Takeda K (2006) Blue metal complex pigments involved in blue flower color. Proc Jpn Acad Ser B Phys Biol Sci 82(4):142–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomás-Barberán FA, Clifford MN (2000a) Flavanones, chalcones and dihydrochalcones – nature, occurrence and dietary burden. J Sci Food Agric 80(7):1073–1080

    Article  Google Scholar 

  • Tomás-Barberán FA, Clifford MN (2000b) Dietary hydroxybenzoic acid derivatives–nature, occurrence and dietary burden. J Sci Food Agric 80(7):1024–1032

    Article  Google Scholar 

  • Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux J-L (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem 97(4):679–688

    Article  CAS  Google Scholar 

  • Veitch NC, Grayer RJ (2008) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 25(3):555–611

    Article  CAS  PubMed  Google Scholar 

  • Vermerris W, Nicholson RL (2008) Phenolic compound biochemistry. Springer, Dordrecht; London

    Google Scholar 

  • Vitrac X, Bornet A, Vanderlinde R, Valls J, Richard T, Delaunay J-C, Mérillon J-M, Teissédre P-L (2005) Determination of Stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, ε-viniferin) in Brazilian Wines. J Agric Food Chem 53(14):5664–5669

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Kikuzaki H, Lin C-C, Kahyaoglu A, Huang M-T, Nakatani N, Ho C-T (1999) Acetophenone glycosides from Thyme (Thymus vulgaris L.). J Agric Food Chem 47(5):1911–1914

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang Q, Yang Q, Yan X, Feng S, Wang Z (2019a) Comparison of anthraquinones, iridoid glycosides and triterpenoids in morinda officinalis and morinda citrifolia using UPLC/Q-TOF-MS and multivariate statistical analysis. Molecules 25(1):160

    Article  PubMed Central  CAS  Google Scholar 

  • Wang Y, Fong SK, Singh AP, Vorsa N, Johnson-Cicalese J (2019b) Variation of anthocyanins, proanthocyanidins, flavonols, and organic acids in cultivated and wild diploid blueberry species. HortScience 54(3):576–585

    Article  CAS  Google Scholar 

  • Wannan BS, Waterhouse JT, Gadek PA, Quinn CJ (1985) Biflavonyls and the affinities of Blepharocarya. Biochem Syst Ecol 13(2):105–108

    Article  CAS  Google Scholar 

  • Xie L, Bolling BW (2014) Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC–MS. Food Chem 148:300–306

    Article  CAS  PubMed  Google Scholar 

  • Yamane K, Kato Y (2012) Handbook on flavonoids: dietary sources, properties, and health benefits. Nova Science Publishers, Hauppauge, NY

    Google Scholar 

  • Yang Z, Kinoshita T, Tanida A, Sayama H, Morita A, Watanabe N (2009) Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceous odour. Food Chem 114(1):289–294

    Article  CAS  Google Scholar 

  • Zeb A (2015) Phenolic profile and antioxidant potential of wild watercress (Nasturtium officinale L.). Springerplus 4:714

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeb A, Muhammad B, Ullah F (2017) Characterization of sesame (Sesamum indicum L.) seed oil from Pakistan for phenolic composition, quality characteristics and potential beneficial properties. J Food Measur Charact 11(3):1362–1369

    Article  Google Scholar 

  • Zhang J-R, Tolchard J, Bathany K, Langlois d’Estaintot B, Chaudiere J (2018) Production of 3,4-cis- and 3,4-trans-leucocyanidin and their distinct MS/MS fragmentation patterns. J Agric Food Chem 66(1):351–358

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeb, A. (2021). Chemistry of Phenolic Antioxidants. In: Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-74768-8_2

Download citation

Publish with us

Policies and ethics