Skip to main content

Abstract

New technologies that enhance our understanding of shoe-floor mechanics have opened opportunities to address slip and fall accidents. Footwear has been identified as one critical factor capable of reducing an individual’s risk. Thus, this moment is ripe for reducing the burden of slips, trips, and fall events. New technology can be broadly categorized into: 1) new modeling methods for predicting footwear friction performance; 2) new experimental methods for characterizing friction mechanics; and 3) new human-centred methods for characterizing interactions between the footwear and the user. These emerging technologies have the potential to elevate friction and traction performance of footwear and enhance the information available to ergonomics professionals to match appropriate footwear to applications. However, the deployment of these technologies is only beginning to guide footwear design and consumer behaviors. Thus, the footwear manufacturers’ perspective in implementing new technology will also be presented. In this workshop, we will A) present information regarding emerging technologies in addition to their benefits and limitations; and B) survey the audience, disaggregated by industry sector, to obtain new data on the potential for these technologies to be accepted and implemented by professionals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell, J.L., Collins, J.W., Chiou, S.: Effectiveness of a no-cost-to-workers, slip-resistant footwear program for reducing slipping-related injuries in food service workers: a cluster randomized trial. Scand. J. Work Environ. Health 45(2), 194–202 (2019)

    Google Scholar 

  2. Verma, S.K., et al.: A prospective study of floor surface, shoes, floor cleaning and slipping in US limited-service restaurant workers. Occup. Environ. Med. 68(4), 279–285 (2011)

    Article  Google Scholar 

  3. Wikipedia. Vibram (2020). [cited 2/5/2021]. https://en.wikipedia.org/wiki/Vibram

  4. Frederick, E.: Optimal frictional properties for sport shoes and sport surfaces. In: ISBS-Conference Proceedings Archive (1993)

    Google Scholar 

  5. Van Groningen, D.J.: Effects of outsole shoe patterns on athletic performance (2016)

    Google Scholar 

  6. Hanson, J.P., Redfern, M.S., Mazumdar, M.: Predicting slips and falls considering required and available friction. Ergonomics 42(12), 1619–1633 (1999)

    Article  Google Scholar 

  7. U.S. Department of Labor-Bureau of Labor Statistics, Nonfatal cases involving days away from work: selected characteristics (2011 forward) Series ID: CSUE4X00000063000, CSU00X00000063000: Washington, D.C. (2020)

    Google Scholar 

  8. Welfare, M.O.H.L.A.: Vital statistics of Japan Final data General mortality, V. Statistics, Editor: Shinjuku-ku, Japan (2020)

    Google Scholar 

  9. Canadian Institute for Health Information, Exercise caution: Canadians frequently injured in falls (2017)

    Google Scholar 

  10. U.S. Department of Labor-Bureau of Labor Statistics, Nonfatal cases involving days away from work: selected characteristics (2011 forward) Series ID: CSUAFS422XXX6E100, CSUAFS42XXXX6E100: Washington, D.C. (2020)

    Google Scholar 

  11. Nachreiner, N.M., Findorff, M.J., Wyman, J.F., Mccarthy, T.C.: Circumstances and consequences of falls in community-dwelling older women. J. Women’s Health 16(10), 1437–1446 (2007)

    Article  Google Scholar 

  12. Iraqi, A., Cham, R., Redfern, M.S., Beschorner, K.E.: Coefficient of friction testing parameters influence the prediction of human slips. Appl. Ergon. 70, 118–126 (2018)

    Article  Google Scholar 

  13. Chang, W.R., et al.: The role of friction in the measurement of slipperiness, Part 2: survey of friction measurement devices. Ergon 44(13), 1233–1261 (2001)

    Article  Google Scholar 

  14. Grönqvist, R., et al.: Human-centred approaches in slipperiness measurement. Ergonomics 44(13), 1167–1199 (2001)

    Article  Google Scholar 

  15. Hsu, J., et al.: Slip resistance of winter footwear on snow and ice measured using maximum achievable incline. Ergonomics 59(5), 717–728 (2016)

    Article  Google Scholar 

  16. Beschorner, K.E., Iraqi, A., Redfern, M.S., Cham, R., Li, Y.: Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions. Ergonomics 62(5), 668–681 (2019)

    Article  Google Scholar 

  17. Blanchette, M.G., Powers, C.M.: The influence of footwear tread groove parameters on available friction. Appl. Ergon. 50, 237–241 (2015)

    Article  Google Scholar 

  18. Hemler, S., et al.: Changes in under-shoe traction and fluid drainage for progressively worn shoe tread. Appl. Ergon. 80, 35–42 (2019)

    Article  Google Scholar 

  19. Hemler, S.L., Pliner, E.M., Redfern, M.S., Haight, J.M., Beschorner, K.E.: Traction performance across the life of slip-resistant footwear: preliminary results from a longitudinal study. J. Saf. Res. 74, 219–225 (2020)

    Article  Google Scholar 

  20. Li, K., Chen, C.: The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants. Appl. Ergon. 35, 499–507 (2004)

    Article  Google Scholar 

  21. Li, K.W., Chen, C.J.: Effects of tread groove orientation and width of the footwear pads on measured friction coefficients. Saf. Sci. 43(7), 391–405 (2005)

    Article  Google Scholar 

  22. Iraqi, A., Vidic, N.S., Redfern, M.S., Beschorner, K.E.: Prediction of coefficient of friction based on footwear outsole features. Appl. Ergon. 82, 102963 (2020)

    Article  Google Scholar 

  23. Jones, T.G., Iraqi, A., Beschorner, K.E.: Performance testing of work shoes labeled as slip resistant. Appl. Ergon. 68, 304–312 (2018)

    Article  Google Scholar 

  24. Yamaguchi, T., Katsurashima, Y., Hokkirigawa, K.: Effect of rubber block height and orientation on the coefficients of friction against smooth steel surface lubricated with glycerol solution. Tribol. Int. 110, 96–102 (2017)

    Article  Google Scholar 

  25. Hale, J., O’connell, A., Lewis, R., Carré, M., Rongong, J.: An evaluation of shoe tread parameters using FEM. Tribol. Int. 153, 106570 (2021)

    Google Scholar 

  26. Moriyasu, K., Nishiwaki, T., Shibata, K., Yamaguchi, T., Hokkirigawa, K.: Friction control of a resin foam/rubber laminated block material. Trib. Int. 136, 548–555 (2019)

    Article  Google Scholar 

  27. Yamaguchi, T., et al.: Development of new footwear sole surface pattern for prevention of slip-related falls. Saf. Sci. 50(4), 986–994 (2012)

    Article  Google Scholar 

  28. Gao, C., Abeysekera, J., Hirvonen, M., Aschan, C.: The effect of footwear sole abrasion on the coefficient of friction on melting and hard ice. Int. J. Ind. Ergon. 31(5), 323–330 (2003)

    Article  Google Scholar 

  29. Gao, C., Abeysekera, J., Hirvonen, M., Grönqvist, R.: Slip resistant properties of footwear on ice. Ergonomics 47(6), 710–716 (2004)

    Article  Google Scholar 

  30. Yamaguchi, T., Hsu, J., Li, Y., Maki, B.E.: Efficacy of a rubber outsole with a hybrid surface pattern for preventing slips on icy surfaces. Appl. Ergon. 51, 9–17 (2015)

    Article  Google Scholar 

  31. Tsai, Y.J., Powers, C.M.: The influence of footwear sole hardness on slip initiation in young adults*. J. Forensic Sci. 53(4), 884–888 (2008)

    Article  Google Scholar 

  32. Kietzig, A.M., Hatzikiriakos, S., Englezos, P.: Ice friction: the effects of surface roughness, structure, and hydrophobicity. J. Appl. Phys. 106(2), 024303 (2009)

    Article  Google Scholar 

  33. Shibata, K., et al.: Effect of groove width and depth and urethane coating on slip resistance of vinyl flooring sheet in glycerol solution. Tribol. Int. 135, 89–95 (2019)

    Article  Google Scholar 

  34. Nishi, T., Moriyasu, K., Harano, K., Nishiwaki, T.: Influence of dewettability on rubber friction properties with different surface roughness under water/ethanol/glycerol lubricated conditions. Tribol. Online 11(5), 601–607 (2016)

    Article  Google Scholar 

  35. Sato, S., et al.: Dry sliding friction and Wear behavior of thermoplastic polyurethane against abrasive paper. Biotribology 23, 100130 (2020)

    Google Scholar 

  36. Bagheri, Z.S., Anwer, A.O., Fernie, G., Naguib, H.E., Dutta, T.: Effects of multi-functional surface-texturing on the ice friction and abrasion characteristics of hybrid composite materials for footwear. Wear 418, 253–264 (2019)

    Article  Google Scholar 

  37. Rizvi, R., Naguib, H., Fernie, G., Dutta, T.: High friction on ice provided by elastomeric fiber composites with textured surfaces. Appl. Phys. Lett. 106(11), 111601 (2015)

    Article  Google Scholar 

  38. Roshan Fekr, A., et al.: Evaluation of winter footwear: comparison of test methods to determine footwear slip resistance on ice surfaces. Int. J. Environ. Res. Publ. Health 18(2), 405 (2021)

    Article  Google Scholar 

  39. Li, K., Wu, H., Lin, Y.: The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants. Appl. Ergon. 37, 743–8 (2006)

    Article  Google Scholar 

  40. Moore, D.F.: The Friction and Lubrication of Elastomers, International Series of Monographs on Material Science and Technology. Pergamon Press, Oxford (1972)

    Google Scholar 

  41. Strobel, C.M., Menezes, P.L., Lovell, M.R., Beschorner, K.E.: Analysis of the contribution of adhesion and hysteresis to shoe–floor lubricated friction in the boundary lubrication regime. Tribol. Lett. 47(3), 341–347 (2012)

    Article  Google Scholar 

  42. Heinrich, G., Klüppel, M., Vilgis, T.A.: Evaluation of self-affine surfaces and their implication for frictional dynamics as illustrated with a Rouse material. Comput. Theor. Polym. Sci. 10(1–2), 53–61 (2000)

    Article  Google Scholar 

  43. Persson, B.N.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115(8), 3840–3861 (2001)

    Article  Google Scholar 

  44. Moghaddam, S., Acharya, A., Redfern, M., Beschorner, K.: Predictive multiscale computational model of shoe-floor coefficient of friction. J. Biomech. 66, 145–152 (2018)

    Article  Google Scholar 

  45. Moghaddam, S.R.M., Redfern, M., Beschorner, K.: A microscopic finite element model of shoe-floor hysteresis and adhesion friction. Tribol. Lett. 59(3), 1–10 (2015)

    Article  Google Scholar 

  46. Moghaddam, S.R., Beschorner, K.E.: Sensitivity of a multiscale model of shoe-floor-contaminant friction to normal force and shoe-floor contact angle. In: Society of Tribologists and Lubrication Engineers 2017, Atlanta, GA (2017)

    Google Scholar 

  47. Strandberg, L.: The effect of conditions underfoot on falling and overexertion accidents. Ergonomics 28(1), 131–47 (1985)

    Article  Google Scholar 

  48. Tisserand, M.: Progress in the prevention of falls caused by slipping. Ergonomics 28, 1027–1042 (1985)

    Article  Google Scholar 

  49. Beschorner, K., Lovell, M., Higgs, C., Redfern, M.: Modeling mixed-lubrication of a shoe-floor interface applied to a pin-on-disk apparatus. Tribol. Trans. 52(4), 560–568 (2009)

    Article  Google Scholar 

  50. Chang, W.R., et al.: The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions. Ergonomics 44(13), 1217–32 (2001)

    Article  Google Scholar 

  51. Hamrock, B.J., Schmid, S.R., Jacobson, B.O.: Fundamentals of Fluid Film Lubrication. CRC Press, Boca Raton (2004)

    Google Scholar 

  52. Hemler, S., Charbonneau, D., Beschorner, K.: Predicting hydrodynamic conditions under worn shoes using the tapered-wedge solution of Reynolds equation. Trib. Int. 145, 106161 (2020)

    Article  Google Scholar 

  53. Singh, G., Beschorner, K.E.: A method for measuring fluid pressures in the shoe-floor-fluid interface: application to shoe tread evaluation. IIE Trans. Occup. Ergon. Hum. Factors 2(2), 53–59 (2014)

    Article  Google Scholar 

  54. Beschorner, K.E., Albert, D.A., Chambers, A.J., Redfern, M.R.: Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread & implications on slip severity. J. Biomech. 47(2), 458–463 (2014)

    Article  Google Scholar 

  55. Sundaram, V., Hemler, S.L., Chanda, A., Haight, J.M., Redfern, M.S., Beschorner, K.E.: Worn region size of shoe soles impacts human slips: testing a mechanistic model. J. Biomech. 105, 109797 (2020)

    Google Scholar 

  56. Shan, L., Levert, J., Meade, L., Tichy, J., Danyluk, S.: Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing. J. Trib. 122(3), 539–543 (2000)

    Article  Google Scholar 

  57. Iraqi, A.: Comparison of interfacial fluid pressures generated across common shoe-floor friction testing apparatuses. In: Department of Mechanical Engineering. Blekinge Institute of Technology, Karlskrona, Sweden (2013)

    Google Scholar 

  58. Walter, P., Tushak, C., Hemler, S., Beschorner, K.: Effect of tread design and hardness on interfacial fluid force and friction in artificially worn shoes. Footwear Sci., in review (2021)

    Google Scholar 

  59. Beschorner, K.E., et al.: An observational ergonomic tool for assessing the worn condition of slip-resistant shoes. Appl. Ergon. 88, 103140 (2020)

    Article  Google Scholar 

  60. Moriyasu, K., Nishiwaki, T., Yamaguchi, T., Hokkirigawa, K.: New technique of three directional ground reaction force distributions. Footwear Sci. 2(2), 57–64 (2010)

    Article  Google Scholar 

  61. Moriyasu, K., Nishiwaki, T., Yamaguchi, T., Hokkirigawa, K.: Experimental analysis of the distribution of traction coefficient in the shoe-ground contact area during running. Tribol. Online 7(4), 267–273 (2012)

    Article  Google Scholar 

  62. Niwa, E., et al.: Load vector sensors using strain-sensitive cr-n thin films and their applications. Electron. Commun. Jpn. 99(4), 58–67 (2016)

    Article  Google Scholar 

  63. Yamaguchi, T.: Distribution of the local required coefficient of friction in the shoe–floor contact area during straight walking: a pilot study. Biotribology 19, 100101 (2019)

    Article  Google Scholar 

  64. Albert, D.L., Moyer, B., Beschorner, K.E.: Three-dimensional shoe kinematics during unexpected slips: implications for shoe-floor friction testing. IIE Trans. Occup. Ergon. Hum. Factors 5(1), 1–11 (2017)

    Google Scholar 

  65. Chang, W.-R., Leclercq, S., Lockhart, T.E., Haslam, R.: State of science: occupational slips, trips and falls on the same level. Ergonomics 59(7), 861–883 (2016)

    Google Scholar 

  66. Chang, W.R., Courtney, T.K., Gronqvist, R., Redfern, M.S.: Measuring slipperiness- discussions on the state of the art and future research. In: Chang, W.R., Courtney, T.K. (eds.) Measuring Slipperiness: Human Locomotion and Surface Factors. Taylor & Francis, London, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt E. Beschorner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beschorner, K.E., Li, Y.(., Yamaguchi, T., Ells, W., Bowman, R. (2022). The Future of Footwear Friction. In: Black, N.L., Neumann, W.P., Noy, I. (eds) Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021). IEA 2021. Lecture Notes in Networks and Systems, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-74614-8_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74614-8_103

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74613-1

  • Online ISBN: 978-3-030-74614-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics