Skip to main content
Log in

A Microscopic Finite Element Model of Shoe–Floor Hysteresis and Adhesion Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Few efforts have attempted to model the tribological interaction of shoe–floor contacting surfaces despite high prevalence of slipping accidents. Hysteresis and adhesion are the two main contributing mechanisms in shoe–floor friction at the microscopic asperity level. This study developed a three-dimensional microscopic finite element model of shoe–floor surfaces to quantify the effect of surface topography, shoe material properties and sliding speed on hysteresis and adhesion friction. The validity of the model was assessed by comparing model predictions to pin-on-disk experimental data. The model predicts that hysteresis friction increases for harder shoe materials, rougher shoe surfaces and rougher floor surfaces, while adhesion increases for smoother shoe surfaces, smoother floor surfaces and decreasing sliding speed. The effects of shoe material and floor roughness on the predicted hysteresis friction values were consistent with the experimental data. The effects of sliding speed on adhesion friction were moderately consistent with the experimental data. In addition, the predicted hysteresis magnitudes were consistent with experimental data. This model is a significant step toward development of a comprehensive shoe–floor friction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A c :

Real contact area

COFAdhesion :

Coefficient of friction due to adhesion

COFHysteresis :

Coefficient of friction due to hysteresis

E(t):

Variation of compressive modulus with respect to time

F Adhesion :

Friction force due to adhesion

F N :

Loading force normal to the surface

F Hysteresis :

Friction force due to hysteresis

G(t):

Variation of shear modulus with respect to time

R z :

Average peak-to-valley distance of surface profiles

Δ q :

Root mean square slope of surface profiles

υ :

Poisson’s ratio

σ s :

Interfacial true shearing stress required to break the contact junctions

τ :

Time constant of exponential decay in material properties

References

  1. Bureau of Labor Statistics (BLS).: Nonfatal occupational injuries and illnesses requiring days away from work, 2012 (2013)

  2. Liberty Mutual Research Institute.: Liberty mutual workplace safety index (2012)

  3. Hanson, J.P., Redfern, M.S., Mazumdar, M.: Predicting slips and falls considering required and available friction. Ergonomics 42(12), 1619–1633 (1999)

    Article  Google Scholar 

  4. Burnfield, J.M., Powers, C.M.: Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance. Ergonomics 49(10), 982–995 (2006)

    Article  Google Scholar 

  5. Beschorner, K.E., Redfern, M.S., Porter, W.L., Debski, R.E.: Effects of slip testing parameters on measured coefficient of friction. Appl. Ergon. 38(6), 773–780 (2007)

    Article  Google Scholar 

  6. Proctor, T.D., Coleman, V.: Slipping, tripping and falling accidents in Great Britain—present and future. J. Occup. Accid. 9(4), 269–285 (1988)

    Article  Google Scholar 

  7. Chang, W.R.: The effect of surface roughness on dynamic friction between neolite and quarry tile. Saf. Sci. 29(2), 89–105 (1998)

    Article  Google Scholar 

  8. Redfern, M.S., Bidanda, B.: Slip resistance of the shoe-floor interface under biomechanically-relevant conditions. Ergonomics 37(3), 511–524 (1994)

    Article  Google Scholar 

  9. Grönqvist, R.: Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors. Ergonomics 38(2), 224–241 (1995)

    Article  Google Scholar 

  10. Li, K.W., Chen, C.J.: The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants. Appl. Ergon. 35(6), 499–507 (2004)

    Article  Google Scholar 

  11. Li, K.W., Wu, H.H., Lin, Y.C.: The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants. Appl. Ergon. 37(6), 743–748 (2006)

    Article  Google Scholar 

  12. Strobel, C.M., Menezes, P.L., Lovell, M.R., Beschorner, K.E.: Analysis of the contribution of adhesion and hysteresis to shoe–floor lubricated friction in the boundary lubrication regime. Tribol. Lett. 47(3), 341–347 (2012)

    Article  Google Scholar 

  13. Chang, W.R., Kim, I.J., Manning, D.P., Bunterngchit, Y.: The role of surface roughness in the measurement of slipperiness. Ergonomics 44(13), 1200–1216 (2001)

    Article  Google Scholar 

  14. Cheung, J.T.M., Yu, J., Wong, D.W.C., Zhang, M.: Current methods in computer-aided engineering for footwear design. Footwear Sci. 1(1), 31–46 (2009)

    Article  Google Scholar 

  15. Beschorner, K. E. (2008). Development of a computational model for shoe-floor contaminant friction. PhD Dissertation, University of Pittsburgh

  16. Sun, Z., Howard, D., Moatamedi, M.: Finite element analysis of footwear and ground interaction. Strain 41(3), 113–117 (2005)

    Article  Google Scholar 

  17. Moore, D.F.: The friction of pneumatic tyres (1975)

  18. Tabor, D.: Friction, adhesion and boundary lubrication of polymers. In: Lee, L.-H. (ed.) Advances in Polymer Friction and Wear, pp. 5–30. Springer, New York (1975)

    Google Scholar 

  19. Bowden, F.P., Tabor, D., Palmer, F.: The friction and lubrication of solids. Am. J. Phys. 19(7), 428–429 (1951)

    Article  Google Scholar 

  20. Moore, C.T., Menezes, P.L., Lovell, M.R., Beschorner, K.E.: Analysis of shoe friction during sliding against floor material: role of fluid contaminant. J. Tribol. 134(4), 041104 (2012)

    Article  Google Scholar 

  21. Beschorner, K., Lovell, M., Higgs III, C.F., Redfern, M.S.: Modeling mixed-lubrication of a shoe-floor interface applied to a pin-on-disk apparatus. Tribol. Trans. 52(4), 560–568 (2009)

    Article  Google Scholar 

  22. Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. R. Soc. Lond. A 274(1356), 21–39 (1963)

    Article  Google Scholar 

  23. Persson, B.N.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115(8), 3840–3861 (2001)

    Article  Google Scholar 

  24. Heinrich, G.: Hysteresis friction of sliding rubbers on rough and fractal surfaces. Rubber Chem. Technol. 70(1), 1–14 (1997)

    Article  Google Scholar 

  25. Le Gal, A., Yang, X., Klüppel, M.: Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis. J. Chem. Phys. 123(1), 014704 (2005)

    Article  Google Scholar 

  26. Bhushan, B.: Introduction to Tribology. John Wiley & Sons, New York (2002)

    Google Scholar 

  27. Gracia, L.A., Liarte, E., Pelegay, J.L., Calvo, B.: Finite element simulation of the hysteretic behaviour of an industrial rubber. Application to design of rubber components. Finite Elem. Anal. Des. 46(4), 357–368 (2010)

    Article  Google Scholar 

  28. Bielsa, J.M., Canales, M., Martínez, F.J., Jiménez, M.A.: Application of finite element simulations for data reduction of experimental friction tests on rubber metal contacts. Tribol. Int. 43(4), 785–795 (2010)

    Article  Google Scholar 

  29. Liu, F., Sutcliffe, M.P.F., Graham, W.R.: Modeling of tread block Contact mechanics using linear viscoelastic theory 3. Tire Sci. Technol. 36(3), 211–226 (2008)

    Article  Google Scholar 

  30. Pálfi, L., Goda, T., Váradi, K., Garbayo, E., Bielsa, J.M., Jiménez, M.A.: FE prediction of hysteretic component of rubber friction. Adv. Tribol. 2012, 807493 (2012)

  31. Tokura, S. Contact and sliding simulation of rubber disk on rigid surface with microscopic roughness. 6th European LS-DYNA Users’ Conference, 2007

  32. Erhart, T.: Review of Solid Element Formulations in LS-DYNA: Properties, Limits, Advantages, Disadvantages. In 2011 Developers’ Forum (2011)

  33. LS-DYNA®. Keyword User’s Manual, volume II. Material Models. August 2012. Version 971 R6.1.0. Livermore Software Technology

  34. Chuckpaiwong, B., Nunley, J.A., Mall, N.A., Queen, R.M.: The effect of foot type on in-shoe plantar pressure during walking and running. Gait Posture 28(3), 405–411 (2008)

    Article  Google Scholar 

  35. Chang, W.R., Grönqvist, R., Leclercq, S., Myung, R., Makkonen, L., Strandberg, L., Thorpe, S.C.: The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions. Ergonomics 44(13), 1217–1232 (2001)

    Article  Google Scholar 

  36. Heinrich, G., Klüppel, M.: Rubber friction, tread deformation and tire traction. Wear 265(7), 1052–1060 (2008)

    Article  Google Scholar 

  37. Le Gal, A., Klüppel, M.: Investigation and modelling of rubber stationary friction on rough surfaces. J. Phys. Condens. Matter 20(1), 015007 (2008)

    Article  Google Scholar 

  38. Kummer, H.W.: Lubricated friction of rubber discussion. Rubber Chem. Technol. 41(4), 895–907 (1968)

    Article  Google Scholar 

  39. Chang, W.R., Hirvonen, M., Grönqvist, R.: The effects of cut-off length on surface roughness parameters and their correlation with transition friction. Saf. Sci. 42(8), 755–769 (2004)

    Article  Google Scholar 

  40. Chang, W.R., Matz, S., Grönqvist, R., Hirvonen, M.: Linear regression models of floor surface parameters on friction between Neolite and quarry tiles. Appl. Ergon. 41(1), 27–33 (2010)

    Article  Google Scholar 

  41. Yura, J., Kumar, A., Yakut, A., Topkaya, C., Becker, E., Ollingwood, J.: National Cooperative Highway Research Program. CHRP Report 449. Elastomeric bridge bearings: Recommended test methods, 2001. Appendix B. Annex C

  42. Gent, A.N.: Engineering with Rubber: How to Design Rubber Components. Carl Hanser, Munich (2012)

    Book  Google Scholar 

  43. Cowap, M.J.H., Moghaddam, S.R.M., Menezes, P.L., Beschorner, K.E.: Contributions of adhesion and hysteresis to the coefficient of friction between shoe and floor surfaces: effects of floor roughness and sliding speed. Tribol. Mater. Surf. Interfaces 9(2), 77–84 (2015). doi:10.1179/1751584X15Y.0000000005

    Article  Google Scholar 

  44. Bui, Q.V., Ponthot, J.P.: Estimation of rubber sliding friction from asperity interaction modeling. Wear 252(1), 150–160 (2002)

    Article  Google Scholar 

  45. Beschorner, K.E., Albert, D.L., Chambers, A.J., Redfern, M.S.: Fluid pressures at the shoe–floor–contaminant interface during slips: effects of tread & implications on slip severity. J. Biomech. 47(2), 458–463 (2014)

    Article  Google Scholar 

  46. Singh, G., Beschorner, K.E.: A method for measuring fluid pressures in the shoe-floor-fluid interface: application to shoe tread evaluation. IIE Trans. Occup. Ergon. Hum. Factors 2(2), 53–59 (2014)

    Article  Google Scholar 

  47. Nosonovsky, M., Mortazavi, V.: Friction-Induced Vibrations and Self Organization: Mechanics and Non-equilibrium Thermodynamics of Sliding Contact. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  48. Tsai, Y.J., Powers, C.M.: The influence of footwear sole hardness on slip initiation in young adults*. J. Forensic Sci. 53(4), 884–888 (2008)

    Article  Google Scholar 

  49. Manning, D.P., Jones, C.: The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane. Appl. Ergon. 32(2), 185–196 (2001)

    Article  Google Scholar 

  50. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17(1), R1 (2005)

    Article  Google Scholar 

  51. Zhang, S.W.: Tribology of elastomers, vol. 47. Elsevier, Amsterdam (2004)

    Google Scholar 

  52. Kim, I.J., Smith, R., Nagata, H.: Microscopic observations of the progressive wear on shoe surfaces that affect the slip resistance characteristics. Int. J. Ind. Ergon. 28(1), 17–29 (2001)

    Article  Google Scholar 

  53. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 295(1442), 300–319 (1966). The Royal Society

    Article  Google Scholar 

Download references

Funding

This work was supported by funding from that National Institute of Occupational Safety and Health (NIOSH R01 OH008986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt E. Beschorner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, S.R.M., Redfern, M.S. & Beschorner, K.E. A Microscopic Finite Element Model of Shoe–Floor Hysteresis and Adhesion Friction. Tribol Lett 59, 42 (2015). https://doi.org/10.1007/s11249-015-0570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0570-x

Keywords

Navigation