Skip to main content

The NGF Metabolic Pathway: New Opportunities for Biomarker Research and Drug Target Discovery

NGF Pathway Biomarkers and Drug Targets

  • Chapter
  • First Online:
Recent Advances in NGF and Related Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((CNNCSN,volume 1331))

Abstract

Recent research has demonstrated that degeneration of the basal forebrain cholinergic system, far from being a mere downstream mediator of Alzheimer’s disease (AD) symptoms, may play a disease-aggravating role in the continuum of AD pathology. The search for novel biomarkers of the cholinergic deficit in AD and novel therapeutic targets for the sustenance of the basal forebrain cholinergic system has therefore taken on more urgency. A novel model that explains the preferential vulnerability of basal forebrain cholinergic neurons in AD as the result of pathological alterations to nerve growth factor (NGF) metabolism offers an integrated investigative platform for the development of such biomarkers and therapeutics. By positing a reciprocal trophic interaction between the basal forebrain and its target tissues, this model can also explain the disease-modifying nature of the cholinergic deficit in AD and can incorporate other key factors in basal forebrain cholinergic degeneration, including NGF receptor changes and retrograde transport deficits in AD. This chapter will focus on the potential of NGF metabolic pathway biomarkers in AD as well as therapeutic targets to correct NGF metabolic deficits, aiding the development of novel pro-cholinergic therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair JC et al (2004) Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease. Stroke 35:e159–e162

    Article  CAS  PubMed  Google Scholar 

  • Akhter H et al (2018) A small molecule inhibitor of plasminogen activator inhibitor-1 reduces brain amyloid-β load and improves memory in an animal model of alzheimer’s disease. J Alzheimers Dis 64:447–457

    Article  CAS  PubMed  Google Scholar 

  • Allard S et al (2012a) Impact of the NGF maturation and degradation pathway on the cortical cholinergic system phenotype. J Neurosci 32:2002–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allard S et al (2012b) Impact of the NGF maturation and degradation pathway on the cortical cholinergic system phenotype. J Neurosci 32:2002–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allard S et al (2018a) Compromise of cortical proNGF maturation causes selective retrograde atrophy in cholinergic nucleus basalis neurons. Neurobiol Aging 67:10–20

    Article  CAS  PubMed  Google Scholar 

  • Allard S et al (2018b) Compromise of cortical proNGF maturation causes selective retrograde atrophy in cholinergic nucleus basalis neurons. Neurobiol Aging 67:10–20

    Article  CAS  PubMed  Google Scholar 

  • Al-Shaikh FSH et al (2020) Selective vulnerability of the nucleus basalis of Meynert among neuropathologic subtypes of Alzheimer disease. JAMA Neurol 77:225–233

    Article  Google Scholar 

  • Backstrom JR et al (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-β peptide (1–40). J Neurosci 16:7910–7919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartus RT et al (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  CAS  PubMed  Google Scholar 

  • Birks JS, Harvey RJ (2018) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 6:CD001190

    PubMed  Google Scholar 

  • Bishop KM et al (2008) Therapeutic potential of CERE-110 (AAV2-NGF): targeted, stable, and sustained NGF delivery and trophic activity on rodent basal forebrain cholinergic neurons. Exp Neurol 211:574–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284:643–663

    Article  CAS  PubMed  Google Scholar 

  • Brookmeyer R, Abdalla N (2018) Estimation of lifetime risks of Alzheimer’s disease dementia using biomarkers for preclinical disease. Alzheimers Dement 14:981–988

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci 103:6735–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno MA et al (2009a) Amyloid β-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol 68:857–869

    Article  CAS  PubMed  Google Scholar 

  • Bruno MA et al (2009b) Increased matrix Metalloproteinase-9 activity in mild cognitive impairment. J Neuropathol Exp Neurol 68:1309

    Article  CAS  PubMed  Google Scholar 

  • Caccamo A et al (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49:671–682

    Article  CAS  PubMed  Google Scholar 

  • Cai Z-Y et al (2007) Serum level of MMP-2, MMP-9 and ox-LDL in Alzheimer’s disease with hyperlipoidemia. J Med Coll PLA 22:352–356

    Article  CAS  Google Scholar 

  • Capsoni S et al (2011) Taking pain out of NGF: a “painless” NGF mutant, linked to hereditary sensory autonomic neuropathy type V, with full neurotrophic activity. PloS One 6:e17321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capsoni S et al (2012) Intranasal “painless” human nerve growth factors slows amyloid neurodegeneration and prevents memory deficits in app X PS1 mice. PLoS One 7:e37555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capsoni S et al (2017) The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor. Brain 140:201–217

    Article  PubMed  Google Scholar 

  • Castle MJ et al (2020) Postmortem analysis in a clinical trial of AAV2-NGF gene therapy for Alzheimer’s disease identifies a need for improved vector delivery. Hum Gene Ther 31:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattaneo A, Capsoni S (2019) Painless nerve growth factor: a TrkA biased agonist mediating a broad neuroprotection via its actions on microglia cells. Pharmacol Res 139:17–25

    Article  CAS  PubMed  Google Scholar 

  • Cavedo E et al (2016) Reduced regional cortical thickness rate of change in donepezil-treated subjects with suspected prodromal Alzheimer’s disease. J Clin Psychiatry 77(12):e1631–e1638

    Article  PubMed  Google Scholar 

  • Cavedo E et al (2017) Reduced basal forebrain atrophy progression in a randomized donepezil trial in prodromal Alzheimer’s disease. Sci Rep 7:11706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Claassen JA, Jansen RW (2006) Cholinergically mediated augmentation of cerebral perfusion in alzheimer’s disease and related cognitive disorders: the cholinergic–vascular hypothesis. J Gerontol Ser A Biol Med Sci 61:267–271

    Article  Google Scholar 

  • Counts S et al (2016) Cerebrospinal fluid proNGF: a putative biomarker for early Alzheimer’s disease. Curr Alzheimer Res 13:800–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuello AC (1996) Effects of trophic factors on the CNS cholinergic phenotype. Prog Brain Res 109:347–358

    Article  CAS  PubMed  Google Scholar 

  • Cuello A et al (2007) NGF-cholinergic dependency in brain aging, MCI and Alzheimer’s disease. Curr Alzheimer Res 4:351–358

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC et al (2019) The brain NGF metabolic pathway in health and in Alzheimer’s pathology. Front Neurosci 13:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Debeir T et al (1998) TrkA antagonists decrease NGF-induced ChAT activity in vitro and modulate cholinergic synaptic number in vivo. J Physiol Paris 92:205–208

    Article  CAS  PubMed  Google Scholar 

  • Debeir T et al (1999a) A nerve growth factor mimetic TrkA antagonist causes withdrawal of cortical cholinergic boutons in the adult rat. Proc Natl Acad Sci 96:4067–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debeir T et al (1999b) A nerve growth factor mimetic TrkA antagonist causes withdrawal of cortical cholinergic boutons in the adult rat. Proc Natl Acad Sci U S A 96:4067–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. A relationship to aging? Arch Neurol 30:113–121

    Article  CAS  PubMed  Google Scholar 

  • Dubois B et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629

    Article  PubMed  Google Scholar 

  • Dubois B et al (2015) Donepezil decreases annual rate of hippocampal atrophy in suspected prodromal Alzheimer’s disease. Alzheimers Dement 11:1041–1049

    Article  PubMed  Google Scholar 

  • ElAli A et al (2016) Tissue-plasminogen activator attenuates Alzheimer’s disease-related pathology development in APPswe/PS1 mice. Neuropsychopharmacology 41:1297

    Article  CAS  PubMed  Google Scholar 

  • El-Hayek YH et al (2019) Tip of the iceberg: assessing the global socioeconomic costs of Alzheimer’s disease and related dementias and strategic implications for stakeholders. J Alzheimers Dis 70:323–341

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksdotter M et al (2018) Cerebrospinal fluid from Alzheimer patients affects cell-mediated nerve growth factor production and cell survival in vitro. Exp Cell Res 371:175–184

    Article  CAS  PubMed  Google Scholar 

  • Eriksdotter-Jönhagen M et al (2012) Encapsulated cell biodelivery of nerve growth factor to the basal forebrain in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 33:18–28

    Article  PubMed  CAS  Google Scholar 

  • Eyjolfsdottir H et al (2016) Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res Ther 8:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabbro S et al (2011) Amyloid-beta levels are significantly reduced and spatial memory defects are rescued in a novel neuroserpin-deficient Alzheimer’s disease transgenic mouse model. J Neurochem 118:928–938

    Article  CAS  PubMed  Google Scholar 

  • Fahnestock M et al (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci 18:210–220

    Article  CAS  PubMed  Google Scholar 

  • Ferreira D et al (2015) Brain changes in Alzheimer’s disease patients with implanted encapsulated cells releasing nerve growth factor. J Alzheimers Dis 43:1059–1072

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo B et al (1995) Differential expression of p140trk, p75NGFR and growth-associated phosphoprotein-43 genes in nucleus basalis magnocellularis, thalamus and adjacent cortex following neocortical infarction and nerve growth factor treatment. Neuroscience 68:29–45

    Article  CAS  PubMed  Google Scholar 

  • Fisher A (2008) Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortea J et al (2018a) Plasma and CSF biomarkers for the diagnosis of Alzheimer’s disease in adults with down syndrome: a cross-sectional study. Lancet Neurol 17:860–869

    Article  CAS  PubMed  Google Scholar 

  • Fortea J et al (2018b) Plasma and CSF biomarkers for the diagnosis of Alzheimer’s disease in adults with down syndrome: a cross-sectional study. Lancet Neurol 17:860–869

    Article  CAS  PubMed  Google Scholar 

  • Fortea J et al (2020) Clinical and biomarker changes of Alzheimer’s disease in adults with down syndrome: a cross-sectional study. Lancet 395:1988–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacobini E, Becker RE (2007) One hundred years after the discovery of Alzheimer’s disease. A turning point for therapy? J Alzheimers Dis 12:37–52

    Article  CAS  PubMed  Google Scholar 

  • Giacobini E et al (2002) Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J Neural Transm 109:1053–1065

    Article  CAS  PubMed  Google Scholar 

  • Gibbs RB, Pfaff D (1994) In situ hybridization detection of trkA mRNA in brain: distribution, colocalization with p75NGFR and up-regulation by nerve growth factor. J Comp Neurol 341:324–339

    Article  CAS  PubMed  Google Scholar 

  • Grothe MJ et al (2014) Basal forebrain atrophy and cortical amyloid deposition in nondemented elderly subjects. Alzheimers Dement 10:S344–S353

    Article  PubMed  PubMed Central  Google Scholar 

  • Group, N. I. o. N. D. S. r.-P. S. S (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1588

    Article  Google Scholar 

  • Hall H et al (2018) AF710B, an M1/sigma-1 receptor agonist with long-lasting disease-modifying properties in a transgenic rat model of Alzheimer’s disease. Alzheimers Dement 14:811–823

    Article  PubMed  Google Scholar 

  • Hampel H et al (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  • Handen BL et al (2020) The Alzheimer’s biomarker consortium-down syndrome: rationale and methodology. Alzheimers Dement (Amst) 12:e12065

    Google Scholar 

  • Hanzel CE et al (2014a) Analysis of matrix metallo-proteases and the plasminogen system in mild cognitive impairment and Alzheimer’s disease cerebrospinal fluid. J Alzheimers Dis 40:667–678

    Article  CAS  PubMed  Google Scholar 

  • Hanzel CE et al (2014b) Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35:2249–2262

    Article  CAS  PubMed  Google Scholar 

  • Hao J-X et al (2000) Intracerebroventricular infusion of nerve growth factor induces pain-like response in rats. Neurosci Lett 286:208–212

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73

    Article  CAS  PubMed  Google Scholar 

  • Head E, Lott IT (2004) Down syndrome and beta-amyloid deposition. Curr Opin Neurol 17:95–100

    Article  CAS  PubMed  Google Scholar 

  • Head E et al (2012) Aging and down syndrome. Curr Gerontol Geriatr Res 2012:412536

    Article  PubMed  PubMed Central  Google Scholar 

  • Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6:2155–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hefti F et al (1986) Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neurosci Lett 69:37–41

    Article  CAS  PubMed  Google Scholar 

  • Hermann M et al (2020) Deficits in developmental neurogenesis and dendritic spine maturation in mice lacking the serine protease inhibitor neuroserpin. Mol Cell Neurosci 102:103420

    Article  CAS  PubMed  Google Scholar 

  • Hock C et al (2000) Increased CSF levels of nerve growth factor in patients with Alzheimer’s disease. Neurology 54:2009–2011

    Article  CAS  PubMed  Google Scholar 

  • Holtzman DM et al (1992) p140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron 9:465–478

    Article  CAS  PubMed  Google Scholar 

  • Horstmann S et al (2010) Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in patients with Alzheimer’s disease. Int Psychogeriatr 22:966–972

    Article  PubMed  Google Scholar 

  • Iulita MF, Cuello AC (2014) Nerve growth factor metabolic dysfunction in Alzheimer’s disease and down syndrome. Trends Pharmacol Sci 35:338–348

    Article  CAS  PubMed  Google Scholar 

  • Iulita MF, Cuello AC (2016) The NGF metabolic pathway in the CNS and its Dysregulation in down syndrome and Alzheimer’s disease. Curr Alzheimer Res 13:53–67

    Article  CAS  PubMed  Google Scholar 

  • Iulita MF et al (2014) Nerve growth factor metabolic dysfunction in Down’s syndrome brains. Brain 137(Pt 3):860–872. https://doi.org/10.1093/brain/awt372

    Article  PubMed  PubMed Central  Google Scholar 

  • Iulita MF et al (2016) An inflammatory and trophic disconnect biomarker profile revealed in down syndrome plasma: relation to cognitive decline and longitudinal evaluation. Alzheimers Dement 12(11):1132–1148

    Article  PubMed  Google Scholar 

  • Iulita MF et al (2017) Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer’s disease. Neurobiol Dis 108:307–323

    Article  CAS  PubMed  Google Scholar 

  • Iulita MF et al (2019) Identification and preliminary validation of a plasma profile associated with cognitive decline in dementia and at-risk individuals: a retrospective cohort analysis. J Alzheimers Dis 67:327–341

    Article  CAS  PubMed  Google Scholar 

  • Jack CR Jr et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack CR Jr (2020) The transformative potential of plasma phosphorylated tau. Lancet Neurol 19:373–374

    Article  PubMed  Google Scholar 

  • Janelidze S et al (2020) Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med 26:379–386

    Article  CAS  PubMed  Google Scholar 

  • Jönhagen ME (2000) Nerve growth factor treatment in dementia. Alzheimer Dis Assoc Disord 14:S31–S38

    Article  PubMed  Google Scholar 

  • Jönhagen ME et al (1998) Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 9:246–257

    Article  Google Scholar 

  • Karami A et al (2015) Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer’s disease. Alzheimers Dement 11:1316–1328

    Article  PubMed  Google Scholar 

  • Karami A et al (2019) CSF cholinergic index, a new biomeasure of treatment effect in patients with Alzheimer’s disease. Frontiers in molecular. Neuroscience 12:239

    CAS  Google Scholar 

  • Karikari TK et al (2020) Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol 19:422–433

    Article  CAS  PubMed  Google Scholar 

  • Kinghorn KJ et al (2006) Neuroserpin binds Aβ and is a neuroprotective component of amyloid plaques in Alzheimer disease. J Biol Chem 281:29268–29277

    Article  CAS  PubMed  Google Scholar 

  • Krueger SR et al (1997) Expression of neuroserpin, an inhibitor of tissue plasminogen activator, in the developing and adult nervous system of the mouse. J Neurosci 17:8984–8996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le AP (2011) Regulation of proNGF processing and its effects on p75NTR-mediated cell death following seizure. Rutgers University-Graduate School-Newark

    Google Scholar 

  • Lim NK-H et al (2011) Investigation of matrix metalloproteinases, MMP-2 and MMP-9, in plasma reveals a decrease of MMP-2 in Alzheimer’s disease. J Alzheimers Dis 26:779–786

    Article  CAS  PubMed  Google Scholar 

  • Lin Z et al (2006) The plasma matrix metalloproteinase-3 increased in patients with Alzheimer’s disease. Chin J Psychiatry 39:209

    Google Scholar 

  • Liu R-M et al (2011) Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 32:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Lorenzl S et al (2003) Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem Int 43:191–196

    Article  CAS  PubMed  Google Scholar 

  • Lorenzl S et al (2008) Profiles of matrix metalloproteinases and their inhibitors in plasma of patients with dementia. Int Psychogeriatr 20:67–76

    Article  PubMed  Google Scholar 

  • Lott IT, Head E (2019) Dementia in down syndrome: unique insights for Alzheimer disease research. Nat Rev Neurol 15:135–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado A et al (2020) The cholinergic system in subtypes of Alzheimer’s disease: an in vivo longitudinal MRI study. Alzheimers Res Ther 12:1–11

    Article  CAS  Google Scholar 

  • Malerba F et al (2016) NGF and proNGF reciprocal interference in immunoassays: open questions, criticalities, and ways forward. Front Mol Neurosci 9:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Manuel DG et al (2016) Alzheimer’s and other dementias in Canada, 2011 to 2031: a microsimulation population health modeling (POHEM) study of projected prevalence, health burden, health services, and caregiving use. Popul Health Metr 14:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Marksteiner J et al (2014) Analysis of 27 vascular-related proteins reveals that NT-proBNP is a potential biomarker for Alzheimer’s disease and mild cognitive impairment: a pilot-study. Exp Gerontol 50:114–121

    Article  CAS  PubMed  Google Scholar 

  • Martín-Aragón S et al (2009) Metalloproteinase’s activity and oxidative stress in mild cognitive impairment and Alzheimer’s disease. Neurochem Res 34:373

    Article  PubMed  CAS  Google Scholar 

  • Martorana A et al (2012) Plasmin system of Alzheimer’s disease patients: CSF analysis. J Neural Transm 119:763–769

    Article  CAS  PubMed  Google Scholar 

  • Massaro A et al (1994) Nerve growth factor (NGF) in cerebrospinal fluid (CSF) from patients with various neurological disorders. Ital J Neurol Sci 15:105–108

    Article  CAS  PubMed  Google Scholar 

  • McDade E, Bateman RJ (2017) Stop Alzheimer’s before it starts. Nature 547:153

    Article  CAS  PubMed  Google Scholar 

  • McKelvey L et al (2013) Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. J Neurochem 124:276–289

    Article  CAS  PubMed  Google Scholar 

  • Medina MG et al (2005) Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J 24:1706–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehra A et al (2016) The plasminogen activation system in neuroinflammation. Biochim Biophys Acta (BBA)-molecular basis of disease 1862:395–402

    Article  CAS  Google Scholar 

  • Miranda E, Lomas D (2006) Neuroserpin: a serpin to think about. Cell Mol Life Sci CMLS 63:709–722

    Article  CAS  PubMed  Google Scholar 

  • Mlekusch R, Humpel C (2009) Matrix metalloproteinases-2 and-3 are reduced in cerebrospinal fluid with low beta-amyloid1–42 levels. Neurosci Lett 466:135–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mroczko B et al (2014) Concentrations of matrix metalloproteinases and their tissue inhibitors in the cerebrospinal fluid of patients with Alzheimer’s disease. J Alzheimers Dis 40:351–357

    Article  CAS  PubMed  Google Scholar 

  • Mufson EJ, Kordower JH (1992) Cortical neurons express nerve growth factor receptors in advanced age and Alzheimer disease. Proc Natl Acad Sci 89:569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mufson EJ et al (2019) Nerve growth factor pathobiology during the progression of Alzheimer’s disease. Front Neurosci 13:533

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray ME et al (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen HM et al (2007) Plasma and CSF serpins in Alzheimer disease and dementia with Lewy bodies. Neurology 69:1569–1579

    Article  CAS  PubMed  Google Scholar 

  • Nitsch RM et al (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258:304–307

    Article  CAS  PubMed  Google Scholar 

  • Nizri E et al (2006) Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50:540–547

    Article  CAS  PubMed  Google Scholar 

  • Oh SB et al (2014) Tissue plasminogen activator arrests Alzheimer’s disease pathogenesis. Neurobiol Aging 35:511–519

    Article  CAS  PubMed  Google Scholar 

  • Olson L et al (1992) Nerve growth factor affects 11 C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J Neural Transm–Parkinson’s disease and dementia section 4:79–95

    Article  CAS  Google Scholar 

  • Osterwalder T et al (1996) Neuroserpin, an axonally secreted serine protease inhibitor. EMBO J 15:2944–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overk CR et al (2010) Cortical M1 receptor concentration increases without a concomitant change in function in Alzheimer’s disease. J Chem Neuroanat 40:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmqvist S et al (2020) Discriminative accuracy of plasma Phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324:772–781

    Article  CAS  PubMed  Google Scholar 

  • Park L et al (2008) Key role of tissue plasminogen activator in neurovascular coupling. Proc Natl Acad Sci 105:1073–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks WC et al (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617

    Article  CAS  PubMed  Google Scholar 

  • Peng M et al (2015) Plasma gelsolin and matrix metalloproteinase 3 as potential biomarkers for Alzheimer disease. Neurosci Lett 595:116–121

    Article  CAS  PubMed  Google Scholar 

  • Pentz R et al (2020) The human brain NGF metabolic pathway is impaired in the pre-clinical and clinical continuum of Alzheimers disease. Mol Psych 1–15

    Google Scholar 

  • Pentz R et al (2021a) Nerve growth factor (NGF) pathway biomarkers in Down syndrome prior to and after the onset of clinical Alzheimer’s disease: a paired CSF and plasma study. Alzheimers Dement 17(4):605–617

    Google Scholar 

  • Pentz R et al (2021b) A new role for matrix metalloproteinase-3 in the NGF metabolic pathway: proteolysis of mature NGF and sex-specific differences in the continuum of Alzheimer’s pathology. Neurobiol Dis 148:105150

    Google Scholar 

  • Pepeu G, Giovannini MG (2010) Cholinesterase inhibitors and memory. Chem Biol Interact 187:403–408

    Article  CAS  PubMed  Google Scholar 

  • Rafii MS et al (2014) A phase 1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement 10:571–581

    Article  PubMed  Google Scholar 

  • Rafii MS et al (2018) Adeno-associated viral vector (serotype 2)–nerve growth factor for patients with alzheimer disease: a randomized clinical trial. JAMA Neurol 75:834–841

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter N et al (2018) Effect of cholinergic treatment depends on cholinergic integrity in early Alzheimer’s disease. Brain 141:903–915

    Article  PubMed  Google Scholar 

  • Risacher SL et al (2016) Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults. JAMA Neurol 73:721–732

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouy D et al (2005) Plasma storage at− 80 C does not protect matrix metalloproteinase-9 from degradation. Anal Biochem 338:294–298

    Article  CAS  PubMed  Google Scholar 

  • Schmitz TW et al (2016) Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer’s pathology. Nat Commun 7:13249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz TW et al (2018) Longitudinal Alzheimer’s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Rep 24:38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H et al (2010) Neuroprotection by donepezil against glutamate excitotoxicity involves stimulation of α7 nicotinic receptors and internalization of NMDA receptors. Br J Pharmacol 161:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y et al (2010) Plasma BDNF and tPA are associated with late-onset geriatric depression. Psychiatry Clin Neurosci 64:249–254

    Article  CAS  PubMed  Google Scholar 

  • Siao C-J, Tsirka SE (2002) Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 22:3352–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stomrud E et al (2010) Alterations of matrix metalloproteinases in the healthy elderly with increased risk of prodromal Alzheimer’s disease. Alzheimer’s Res Ther 2:20

    Article  CAS  Google Scholar 

  • Svensson AL et al (1992) Characterization of muscarinic receptor subtypes in Alzheimer and control brain cortices by selective muscarinic antagonists. Brain Res 596:142–148

    Article  CAS  PubMed  Google Scholar 

  • Thijssen EH et al (2020) Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med 26:387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuna G et al (2018) Evaluation of matrix Metalloproteinase-2 (MMP-2) and-9 (MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2) in plasma from patients with neurodegenerative dementia. J Alzheimers Dis 66:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Tuszynski MH et al (1990) Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J Neurosci 10:3604–3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuszynski MH et al (1991) Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann Neurol: Official Journal of the American Neurological Association and the Child Neurology Society 30:625–636

    Article  CAS  Google Scholar 

  • Tuszynski MH et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  CAS  PubMed  Google Scholar 

  • Tuszynski MH et al (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72:1139–1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hove I et al (2012) Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem 123:203–216

    Article  PubMed  CAS  Google Scholar 

  • Venero J et al (1994) Expression of neurotrophin and trk receptor genes in adult rats with fimbria transections: effect of intraventricular nerve growth factor and brain-derived neurotrophic factor administration. Neuroscience 59:797–815

    Article  CAS  PubMed  Google Scholar 

  • Welikovitch LA et al (2020) Early intraneuronal amyloid triggers neuron-derived inflammatory signaling in APP transgenic rats and human brain. Proc Natl Acad Sci 117:6844–6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whelan CD et al (2019) Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol Commun 7:1–14

    Article  CAS  Google Scholar 

  • Yan P et al (2006) Matrix metalloproteinase-9 degrades amyloid-β fibrils in vitro and compact plaques in situ. J Biol Chem 281:24566–24574

    Article  CAS  PubMed  Google Scholar 

  • Zissimopoulos J et al (2015) The value of delaying Alzheimer’s disease onset. Forum Health Econ Policy 18:25–39. De Gruyter

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank and dedicate this chapter to Professor A. Claudio Cuello, for his continued mentorship and support and for sharing with us Rita Levi Montalcini’s inspirational legacy. Rowan Pentz is the recipient of a Returning Student Fellowship from the McGill Integrated Program in Neuroscience and CIHR Doctoral Award no. 201610GSD-385496-2466860. M. Florencia Iulita would like to acknowledge financial support from a Postdoctoral Research Fellowship from the Jérôme Lejeune and Sisley D’Ornano Foundations and from a pilot exploratory grant (no. 1941) from the Jérôme Lejeune Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Florencia Iulita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pentz, R., Iulita, M.F. (2021). The NGF Metabolic Pathway: New Opportunities for Biomarker Research and Drug Target Discovery. In: Calzà, L., Aloe, L., Giardino, L. (eds) Recent Advances in NGF and Related Molecules. Advances in Experimental Medicine and Biology(), vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-74046-7_4

Download citation

Publish with us

Policies and ethics