Skip to main content

NGF and the Amyloid Precursor Protein in Alzheimer’s Disease: From Molecular Players to Neuronal Circuits

  • Chapter
  • First Online:
Recent Advances in NGF and Related Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((CNNCSN,volume 1331))

Abstract

Alzheimer’s disease (AD), one of the most common causes of dementia in elderly people, is characterized by progressive impairment in cognitive function, early degeneration of basal forebrain cholinergic neurons (BFCNs), abnormal metabolism of the amyloid precursor protein (APP), amyloid beta-peptide (Aβ) depositions, and neurofibrillary tangles. According to the cholinergic hypothesis, dysfunction of acetylcholine-containing neurons in the basal forebrain contributes markedly to the cognitive decline observed in AD. In addition, the neurotrophic factor hypothesis posits that the loss nerve growth factor (NGF) signalling in AD may account for the vulnerability to atrophy of BFCNs and consequent impairment of cholinergic functions. Though acetylcholinesterase inhibitors provide only partial and symptomatic relief to AD patients, emerging data from in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) studies in mild cognitive impairment (MCI) and AD patients highlight the early involvement of BFCNs in MCI and the early phase of AD. These data support the cholinergic and neurotrophic hypotheses of AD and suggest new targets for AD therapy.

Different mechanisms account for selective vulnerability of BFCNs to AD pathology, with regard to altered metabolism of APP and tau. In this review, we provide a general overview of the current knowledge of NGF and APP interplay, focusing on the role of APP in regulating NGF receptors trafficking/signalling and on the involvement of NGF in modulating phosphorylation of APP, which in turn controls APP intracellular trafficking and processing. Moreover, we highlight the consequences of APP interaction with p75NTR and TrkA receptor, which share the same binding site within the APP juxta-membrane domain. We underline the importance of insulin dysmetabolism in AD pathology, in the light of our recent data showing that overlapping intracellular signalling pathways stimulated by NGF or insulin can be compensatory. In particular, NGF-based signalling is able to ameliorates deficiencies in insulin signalling in the medial septum of 3×Tg-AD mice. Finally, we present an overview of NGF-regulated microRNAs (miRNAs). These small non-coding RNAs are involved in post-transcriptional regulation of gene expression, and we focus on a subset that are specifically deregulated in AD and thus potentially contribute to its pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen SJ, Watson JJ, Dawbarn D (2011) The neurotrophins and their role in Alzheimer’s disease. Curr Neuropharmacol 9:559–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amakiri N, Kubosumi A, Tran J, Reddy PH (2019) Amyloid beta and microRNAs in Alzheimer’s disease. Front Neurosci 13:430

    Article  PubMed  PubMed Central  Google Scholar 

  • Appel SH (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann Neurol 10:499–505

    Article  CAS  PubMed  Google Scholar 

  • Arnold SE, Arvanitakis Z, Macauley-Rambach SL et al (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14:168–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639

    Article  CAS  PubMed  Google Scholar 

  • Baker-Nigh A, Vahedi S, Davis EG, Weintraub S, Bigio EH, Klein WL, Geula C (2015) Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer’s disease. Brain 138:1722–1737

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballinger EC, Ananth M, Talmage DA, Role LW (2016) Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91:1199–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbagallo AP, Weldon R, Tamayev R, Zhou D, Giliberto L, Foreman O, D’Adamio L (2010) Tyr(682) in the intracellular domain of APP regulates amyloidogenic APP processing in vivo. PLoS One 5(11):e15503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbato C, Giacovazzo G, Albiero F, Scardigli R, Scopa C, Ciotti MT, Strimpakos G, Coccurello R, Ruberti F (2020) Cognitive decline and modulation of Alzheimer’s disease-related genes after inhibition of microRNA-101 in mouse hippocampal neurons. Mol Neurobiol 57(7):3183–3194

    Article  CAS  PubMed  Google Scholar 

  • Batarseh YS, Duong QV, Mousa YM, Al Rihani SB, Elfakhri K, Kaddoumi A (2016) Amyloid-beta and astrocytes interplay in amyloid-beta related disorders. Int J Mol Sci 17:338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bejanin A, Schonhaut DR, La Joie R, Krame JH, Baker SL, Sosa N et al (2017) Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140:3286–3300

    Article  PubMed  PubMed Central  Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64:749–760

    Article  CAS  PubMed  Google Scholar 

  • Bilousova T, Miller CA, Poon WW, Vinters HV, Corrada M, Kawas C, Hayden EY, Teplow DB, Glabe C, Albay R 3rd, Cole GM, Teng E, Gylys KH (2016) Synaptic amyloid-beta oligomers precede p-Tau and differentiate high pathology control cases. Am J Pathol 186:185–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botté A, Lainé J, Xicota L, Heiligenstein X, Fontaine G, Kasri A, Rivals I, Goh P, Faklaris O, Cossec JC, Morel E, Rebillat AS, Nizetic D, Raposo G, Potier MC (2020) Ultrastructural and dynamic studies of the endosomal compartment in Down syndrome. Acta Neuropathol Commun 8(1):89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Calissano P, Amadoro G, Matrone C, Ciaffrè S, Corsetti V, Marolda R, Ciotti MT, DiLuzio A, Severini C, Mercanti D, Provenzano C, Canu N (2010) Does the term “NGF” actually means anti-amyloidogenic ? The case of NGF. Cell Death Diff 17(7):1126–1133

    Article  CAS  Google Scholar 

  • Cantero JL, Zaborszky L, Atienza M (2016) Volume loss of the nucleus basalis of meynert is associated with atrophy of innervated regions in mild cognitive impairment. Cereb Cortex 27(8):3881–3889

    PubMed Central  Google Scholar 

  • Canu N, Pagano I, LaRosa LR, Pellegrino M, Ciotti MT, Mercanti D, Moretti F, Sposato V, Triaca V, Petrella C, Maruyama IN, Levi A, Calissano P (2017a) Association of TrkA and APP is promoted by NGF and reduced by cell death-promoting agents. Front Mol Neurosci 10:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, Severini C, Ciotti MT, Calissano P (2017b) The intersection of NGF/TrkA signaling and amyloid precursor protein processing in Alzheimer’s disease neuropathology. Int J Mol Sci 18(6):1319

    Article  PubMed Central  CAS  Google Scholar 

  • Caporaso GL, Takei K, Gandy SE, Matteoli M, Mundigl O, Greengard P, De Camilli P (1994) Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein. Neurosci 14:3122–3138

    Article  CAS  Google Scholar 

  • Capsoni S, Ugolini G, Comparini A, Ruberti F, Berardi N, Cattaneo A (2000) Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci USA 97:6826–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo AM, Petanceska S, Terio NB, Peterhoff CM, Durham R, Mercken M, Mehta PD, Buxbaum J, Haroutunian V, Nixon RA (2004) Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging 25:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Chang KA, Kim HS, Ha TY, Ha JW, Shin KY, Jeong YH, Lee JP, Park CH, Kim S, Baik TK, Suh YH (2006) Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration. Mol Cell Biol 26:4327–4338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee N, Sanphui P, Kemeny S, Greene LA, Biswas SC (2016) Role and regulation of Cdc25A phosphatase in neuron death induced by NGF deprivation or β-amyloid. Cell Death Discov 2:16083

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X-Q, Mobley WC (2019) Exploring the pathogenesis of Alzheimer disease in basal forebrain cholinergic neurons: converging insights from alternative hypotheses. Front Neurosci 13:446

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Sawa M, Mobley WC (2018) Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic Biol Med 114:52–61

    Article  CAS  PubMed  Google Scholar 

  • Chow H-M, Shi M, Cheng A, Gao Y, Chen G, Song X, So RWL, Zhang J, Herrup K (2019) Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 22:1806–1819

    Article  CAS  PubMed  Google Scholar 

  • Chung CG, Lee H, Lee SB (2018) Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 75:3159–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline EN, Bicca MA, Viola KL, Klein WL (2018) The amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimer Dis 64(S1):S567–S610

    Article  CAS  Google Scholar 

  • Colom LV, García-Hernández A, Castañeda MT, Perez-Cordova MG, Garrido-Sanabria ER (2006) Septo-hippocampal networks in chronically epileptic rats: potential antiepileptic effects of theta rhythm generation. J Neurophysiol 95:3645–3653

    Article  PubMed  Google Scholar 

  • Craft S (2007) Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 4(2):147–152

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC, Bruno MA, Bell KFS (2007) NGF-cholinergic dependency in brain aging, MCI and Alzheimer’s disease. Curr Alzheimer Res 4:351–358

    Article  CAS  PubMed  Google Scholar 

  • Cui GH, Wu J, Mou FF, Xie WH, Wang FB, Wang QL, Fang J, Xu YW, Dong YR, Liu JR, Guo HD (2018) Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J 32(2):654–668

    Article  CAS  PubMed  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  CAS  PubMed  Google Scholar 

  • De Felice FG (2013) Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 123:531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Felice FG, Lourenco MV, Ferreira ST (2014) How does brain insulin resistance develop in Alzheimer’s disease? Alzheimer Dement 10:S26–S32

    Article  Google Scholar 

  • de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimers disease. Curr Alzheimer Res 9(1):35–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    Article  PubMed  CAS  Google Scholar 

  • Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W (2016) Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13:952–963

    Article  CAS  PubMed  Google Scholar 

  • Ebenau JL, Timmers T, Wesselman LMP et al (2020) ATN classification and clinical progression in subjective cognitive decline. Neurology 95:e46–e58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggert S, Thomas C, Kins S, Hermey G (2018) Trafficking in Alzheimer’s disease: modulation of APP transport and processing by the transmembrane proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 55(7):5809–5829

    Article  CAS  PubMed  Google Scholar 

  • El-Shimy IA, Heikal OA, Hamdi N (2015) Minocycline attenuates Abeta oligomers-induced pro-inflammatory phenotype in primary microglia while enhancing Abeta fibrils phagocytosis. Neurosci Lett 609:36–41

    Article  CAS  PubMed  Google Scholar 

  • Exalto LG, Biessels GJ, Karter AJ, Huang ES, Katon WJ, Minkoff JR, Whitmer RA (2013) Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: a cohort study. Lancet Diabetes Endocrinol 1:183–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira LSS, Fernandes CS, Vieira MNN, de Felice FG (2018) Insulin resistance in Alzheimer’s disease. Front Neurosci 12:830

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher A (2012) Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem 120(Suppl 1):22–33

    Article  CAS  PubMed  Google Scholar 

  • Fishwick KJ, Rylett RJ (2015) Insulin regulates the activity of the high-affinity choline transporter CHT. PLoS One 10:e0132934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fombonne J, Rabizadeh S, Banwait S, Mehlen P, Bredesen DE (2009) Selective vulnerability in Alzheimer’s disease: amyloid precursor protein and p75(NTR) interaction. Ann Neurol 65(3):294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geula C, Nagykery N, Nicholas A, Wu C-K (2008) Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol 67:309–318

    Article  PubMed  Google Scholar 

  • Giannakopoulos P, Herrmann FR, Bussière T, Bouras C, Kövari E, Perl DP, Morrison JH, Gold G, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500

    Article  CAS  PubMed  Google Scholar 

  • Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A, Garozzo D, Nicoletti F, Rizzarelli E, Copani A (2009) Beta-amyloid monomers are neuroprotective. J Neurosci 29:10582–10587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168

    Article  CAS  PubMed  Google Scholar 

  • Grothe M, Zaborszky L, Atienza M, Gil-Neciga E, Rodriguez-Romero R, Teipel SJ, Amunts K, Suarez-Gonzalez A, Cantero JL (2010) Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer’s disease. Cereb Cortex 20:1685–1695

    Article  PubMed  Google Scholar 

  • Guo JP, Arai T, Miklossy J, McGeer PL (2006) Aβ and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proc Natl Acad Sci USA 103:1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsen C, Glerup S, Pallesen LT, Olsen D, Andersen OM, Nykjær A, Madsen P, Petersen CM (2013) Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein. J Neurosci 33:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2(5):a006270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamada N, Fujita Y, Kojima T, Kitamoto A, Akao Y, Nozawa Y, Ito M (2012) MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation. Neurochem Int 60:743–750

    Article  CAS  PubMed  Google Scholar 

  • Hangya B, Ranade SP, Lorenc M, Kepecs A (2015) Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy JA, Higgings GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  • Heese K, Inoue N, Sawada T (2004) APP, NGF & the ‘Sunday-driver’ in a Trolley on the Road. Resto Neurol Neurosci 22(2):131–136

    CAS  Google Scholar 

  • Hu YB, Ren RJ, Zhang YF, Huang Y, Cui HL, Ma C, Qiu WY, Wang H, Cui PJ, Chen HZ, Wang G (2019) Rho-associated coiled-coil kinase 1 activation mediates amyloid precursor protein site-specific Ser655 phosphorylation and triggers amyloid pathology. Aging Cell 18(5):e13001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSF (2020) Modulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer disease. Int J Mol Sci 21(14):4977

    Article  CAS  PubMed Central  Google Scholar 

  • Ioannou MS, Fahnestock M (2017) ProNGF, but Not NGF, switches from neurotrophic to apoptotic activity in response to reductions in TrkA receptor levels. Int J Mol Sci 18:599

    Article  PubMed Central  CAS  Google Scholar 

  • Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Irmady K, Jackman KA, Padow VA, Shahani N, Martin LA, Cerchietti L, Unsicker K, Iadecola C, Hempstead BL (2014) Mir-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J Neurosci 34:3419–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R, Contributors (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimerd Dement 14(4):535–562

    Article  Google Scholar 

  • Jeong DU, Lee JE, Lee SE, Chang WS, Kim SJ, Chang JW (2014) Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. BioMed Res Int 2014:1–10

    CAS  Google Scholar 

  • Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414(6864):643–648

    Article  CAS  PubMed  Google Scholar 

  • Kashyap G, Bapat D, Das D, Gowaikar R, Amritkar RE, Rangarajan G, Ravindranath V, Ambika G (2019) Synapse loss and progress of Alzheimer’s disease—a network model. Sci Rep 9:6555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellar D, Craft S (2020) Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 19:758–766

    Article  CAS  PubMed  Google Scholar 

  • Kerbler GM, Fripp J, Rowe CC, Villemagne VL, Salvado O, Rose S, Coulson EJ (2015) Basal forebrain atrophy correlates with amyloid β burden in Alzheimer’s disease. NeuroImage Clin 7:105–113

    Article  PubMed  Google Scholar 

  • Kilimann I, Grothe M, Heinsen H, Alho EJ, Grinberg L, Amaro E Jr, Dos Santos GA, da Silva RE, Mitchell AJ, Frisoni GB, Bokde AL, Fellgiebel A, Filippi M, Hampel H, Klöppel S, Teipel SJ (2014) Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter study. J Alzheimers Dis 40:687–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiltschewskij D, Cairns MJ (2019) Temporospatial guidance of activity-dependent gene expression by microRNA: mechanisms and functional implications for neural plasticity. Nucleic Acids Res 47:533–545

    Article  CAS  PubMed  Google Scholar 

  • Kitchigina VF (2018) Alterations of coherent theta and gamma network oscillations as an early biomarker of temporal lobe epilepsy and Alzheimer’s disease. Front Integr Neurosci 12:36

    Google Scholar 

  • Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 269:17386–17389

    Article  CAS  PubMed  Google Scholar 

  • La Rosa LR, Perrone L, Nielsen MS, Calissano P, Andersen OM, Matrone C (2015) Y682G mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction. Front Cell Neurosci 9:109

    Google Scholar 

  • Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, Neve R, Ahlijanian MK, Tsai LH (2003) APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163:83–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung LS, Ma J (2018) Medial septum modulates hippocampal gamma activity and prepulse inhibition in an N-methyl-d-aspartate receptor antagonist model of schizophrenia. Schizoph Res 198:36–44

    Article  Google Scholar 

  • Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, Hu W, Yu B, Wang Y, Ding F, Liu Y, Gu X (2015) Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 23(3):423–433

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang YW, Wang X, Zhang H, You X, Liao FF, Xu HJ (2009) Intracellular trafficking of presenilin 1 is regulated by beta-amyloid precursor protein and phospholipase D1. Biol Chem 284:12145–12152

    Article  CAS  Google Scholar 

  • Mankin EA, Fried I (2020) Modulation of human memory by deep brain stimulation of the entorhinal-hippocampal circuitry. Neuron 106(2):218–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matrone C, Ciotti MT, Mercanti D, Marolda R, Calissano P (2008) NGF and BDNF signaling control amyloidogenic route and a production in hippocampal neurons. Proc Natl Acad Sci USA 105:13139–13144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matrone C, Marolda R, Ciafrè S, Ciotti MT, Mercanti D, Calissano P (2009) Tyrosine kinase nerve growth factor receptor switches from prosurvival to proapoptotic activity via Abeta-mediated phosphorylation. Proc Natl Acad Sci U S A 106(27):11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matrone C, Barbagallo AP, La Rosa LR, Florenzano F, Ciotti MT, Mercanti D, Chao MV, Calissano P, D’Adamio L (2011) APP is phosphorylated by TrkA and regulates NGF/TrkA signaling. J Neurosci 31:11756–11761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matrone C, Luvisetto S, La Rosa LR, Tamayev R, Pignataro A, Canu N, Yang L, Barbagallo AP, Biundo F, Lombino F, Zheng H, Ammassari-Teule M, D’Adamio L (2012) Tyr682 in the Aβ-precursor protein intracellular domain regulates synaptic connectivity, cholinergic function, and cognitive performance. Aging Cell 6:1084–1093

    Article  CAS  Google Scholar 

  • Molton SA, Todd DE, Cook SJ (2003) Selective activation of the c-Jun N-terminal kinase (JNK) pathway fails to elicit Bax activation or apoptosis unless the phosphoinositide 3′‐kinase (PI3K) pathway is inhibited. Oncogene 22:4690–4701

    Article  CAS  PubMed  Google Scholar 

  • Montalban E, Mattugini N, Ciarapica R, Provenzano C, Savino M, Scagnoli F, Prosperini G, Carissimi C, Fulci V, Matrone C, Calissano P, Nasi S (2014) MiR-21 is an NGF-modulated microRNA that supports NGF signaling and regulates neuronal degeneration in PC12 cells. Neuromolecular Med 16:415–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mufson EJ, Counts SE, Ginsberg SD, Mahady L, Perez SE, Massa SM, Longo FM, Ikonomovic MD (2019) Nerve growth factor pathobiology during the progression of Alzheimer’s disease. Front Neurosci 13:533

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen MS, Madsen P, Christensen EI, Nykjær A, Gliemann J, Kasper D, Pohlmann R, Petersen CM (2001) The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J 20:2180–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen HM, Mulder SD, Belien JA, Musters RJ, Eikelenboom P, Veerhuis R (2010) Astrocytic A beta 1-42 uptake is determined by A beta-aggregation state and the presence of amyloid-associated proteins. Glia 58:1235–1246

    Article  PubMed  Google Scholar 

  • Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427(6977):843–848

    Article  CAS  PubMed  Google Scholar 

  • Oueslati AJ (2016) Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? Parkinsons Dis 26(1):39–51

    Article  CAS  Google Scholar 

  • Pandey A, Singh P, Jauhari A, Singh T, Khan F, Pant AB, Parmar D, Yadav S (2015) Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem 133:640–652

    Article  CAS  PubMed  Google Scholar 

  • Parsi S, Smith PY, Goupil C, Dorval V, Hébert SS (2015) Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer’s disease. Mol Ther Nucleic Acids 4(10):e256

    Google Scholar 

  • Patel J, Fujisawa S, Berényi A, Royer S, Buzsáki G (2012) Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron 75:410–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patranabis S, Bhattacharyya SN (2016) Phosphorylation of Ago2 and subsequent inactivation of let-7a RNP-specific microRNAs control differentiation of mammalian sympathetic neurons. Mol Cell Biol 36:1260–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RCA, Gatter KC, Powell TPS (1983) The cortical relationships of certain basal ganglia and the cholinergic basal forebrain nuclei. Brain Res 261:327–330

    Article  CAS  PubMed  Google Scholar 

  • Petersen PC, Buzsáki G (2020) Cooling of medial septum reveals theta phase lag coordination of hippocampal cell assemblies. Neuron 107:731–744.e3

    Google Scholar 

  • Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O (2014) Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines. Biochem Pharmacol 88:450–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roussarie JP, Yao V, Rodriguez-Rodriguez P, Oughtred R, Rust J, Plautz Z, Kasturia S, Albornoz C, Wang W, Schmidt EF, Dannenfelser R, Tadych A, Brichta L, Barnea-Cramer A, Heintz N, Hof PR, Heiman M, Dolinski K, Flajolet M, Troyanskaya OG, Greengard P (2020) Selective neuronal vulnerability in Alzheimer’s disease: a network-based analysis. Neuron 107:1–15

    Article  CAS  Google Scholar 

  • Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP, Xia W, Villar A, Campbell WA, Kulnane LS, Nixon RA, Lamb BT, Epstein CJ, Stokin GB, Goldstein LS, Mobley WC (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51:29–42

    Google Scholar 

  • Salta E, De Strooper B (2017) microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer’s disease. FASEB J 31:424–433

    Article  CAS  PubMed  Google Scholar 

  • Sassin I, Schultz C, Thal DR, Rüb U, Arai K, Braak E, Braak H (2000) Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol 100:259–269

    Article  CAS  PubMed  Google Scholar 

  • Schettini G, Govoni S, Racchi M, Rodriguez G (2010) Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role—relevance for Alzheimer pathology. J Neurochem 115:1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Google Scholar 

  • Schmitz TW, Mur M, Aghourian M, Bedard M-A, Spreng RN, Alzheimer’s Disease Neuroimaging Initiative (2018) Longitudinal Alzheimer’s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Rep 24:38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert M, Gautam D, Surjo D et al (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A 101:3100–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ, Yamazaki T, Citron M, Podlisny MB, Koo EH, Teplow DB, Haass C (1996) The role of APP processing and trafficking pathways in the formation of amyloid beta-protein. Ann N Y Acad Sci 777:57–64

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skeberdis VA, Lan J, Zheng X, Zukin RS, Bennett MVL (2001) Insulin promotes rapid delivery of N-methyl-D-aspartate receptors to the cell surface by exocytosis. Proc Natl Acad Sci U S A 98:3561–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    Google Scholar 

  • Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sposato V, Canu N, Fico E, Fusco S, Bolasco G, Ciotti MT, Spinelli M, Mercanti D, Grassi C, Triaca V, Calissano P (2019) The medial septum is insulin resistant in the AD presymptomatic phase: rescue by nerve growth factor-driven IRS1 activation. Mol Neurobiol 56:535–552

    Article  CAS  PubMed  Google Scholar 

  • Stypulkowski PH, Stanslaski SR, Giftakis JE (2017) Modulation of hippocampal activity with fornix deep brain stimulation. Brain Stimul 10:1125–1132

    Google Scholar 

  • Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Pawełczyk T, Ronowska A (2013) Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res 38:1523–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M Kametani F, Nonaka T, Akiyama H, Hisanaga S, Hasegawa M (2015) Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau. Acta Neuropathol 129(6):895–907

    Google Scholar 

  • Tarr PE, Contursi C, Roncarati R, Noviello C, Ghersi E, Scheinfeld MH, Zambrano N, Russo T, D’Adamio L (2002) Evidence for a role of the nerve growth factor receptor TrkA in tyrosine phosphorylation and processing of beta-APP. Biochem Biophys Res Commun 295(2):324–329

    Article  CAS  PubMed  Google Scholar 

  • Teipel SJ, Flatz WH, Heinsen H, Bokde AL, Schoenberg SO, Stockel S, Dietrich O, Reiser MF, Moller HJ, Hampel H (2005) Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 128(Part 11):2626–2644

    Article  PubMed  Google Scholar 

  • Teipel SJ, Meindl T, Grinberg L, Grothe M, Cantero JL, Reiser MF, Möller H-J, Heinsen H, Hampel H (2011) The cholinergic system in mild cognitive impairment and Alzheimer’s disease: an in vivo MRI and DTI study. Hum Brain Mapp 32:1349–1362

    Article  PubMed  Google Scholar 

  • Tenreiro S, Eckermann K, Outeiro TF (2014) Protein phosphorylation in neurodegeneration: friend or foe? Front Mol Neurosci 7:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terasawa K, Ichimura A, Sato F, Shimizu K, Tsujimoto G (2009) Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J. 276:3269–3276

    Article  CAS  PubMed  Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  • Tilvis RS, Kahonen-Vare MH, Jolkkonen J, Valvanne J, Pitkala KH, Strandberg TE (2004) Predictors of cognitive decline and mortality of aged people over a 10-year period. J Gerontol Ser A Biol Sci Med Sci 59:M268–M274

    Article  Google Scholar 

  • Triaca V, Sposato V, Bolasco G, Ciotti MT, Pelicci P, Bruni AC, Cupidi C, Maletta R, Feligioni M, Nisticò R, Canu N, Calissano P (2016) NGF controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for Alzheimer’s disease. Aging Cell 15:661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triaca V, Coccurello R, Giacovazzo G (2018) The neuronal Shc adaptor in Alzheimer’s disease. Aging 10(1):5–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsanov M (2017) Speed and oscillations: medial septum integration of attention and navigation. Front Syst Neurosci 11:67

    Google Scholar 

  • Vaegter CB, Jansen P, Fjorback AW, Glerup S, Skeldal S, Kjolby M, Richner M, Erdmann B, Nyengaard JR, Tessarollo L, Lewin GR, Willnow TE, Chao MV, Nykjaer A (2011) Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 14:54–61

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Kumar A, Tripathi T, Kumar A (2018) Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy. J Pharm Pharmacol 70(8):985–993

    Article  CAS  PubMed  Google Scholar 

  • Vogels OJM, Broere CAJ, ter Laak HJ, ten Donkelaar HJ, Nieuwenhuys R, Schulte BPM (1990) Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer’s disease. Neurobiol Aging 11:3–13

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yang L, Wang Z, Zheng H (2007) Amyolid precursor protein mediates presynaptic localization and activity of the high-affinity choline transporter. Proc Natl Acad Sci U S A 104:14140–14145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Pan L, Wei M, Wang Q, Liu WW, Wang N, Jiang XY, Zhang X, Bao L (2015) FMRP-mediated axonal delivery of miR-181d regulates axon elongation by locally targeting Map1b and Calm1. Cell Rep 13:2794–2807

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Qin L, Tang B (2019a) MicroRNAs in Alzheimer’s disease. Front Genet 10:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Tanokashira D, Fukui Y, Maruyama M, Kuroiwa C, Saito T, Saido TC, Taguchi A (2019b) Serine phosphorylation of IRS1 correlates with Aβ-unrelated memory deficits and elevation in Aβ level prior to the onset of memory decline in AD. Nutrients 11:1942

    Article  CAS  PubMed Central  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, Delong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, PriceDL StrubleRG, Clark AW, Coyle JT, De-lon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Whitmer RA (2007) Type 2 diabetes and risk of cognitive impairment and dementia. Curr Neurol Neurosci Rep 7:373–380

    Article  CAS  PubMed  Google Scholar 

  • Willette AA, Bendlin BB, Starks EJ et al (2015) Association of insulin resistance with cerebral glucose uptake in late middle–aged adults at risk for Alzheimer disease. JAMA Neurol 72:1013

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Ye X, Xiong Y, Zhu H, Miao J, Zhang W, Wan J (2016) The protective role of microRNA-200c in Alzheimer’s disease pathologies is induced by beta amyloid-triggered endoplasmic reticulum stress. Front Mol Neurosci 9:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Wurtman RJ (1992) Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. Trends Neurosci 15:117–122

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Weissmiller AM, White JA 2nd, Fang F, Wang X, Wu Y, Pearn ML, Zhao X, Sawa M, Chen S, Gunawardena S, Ding J, Mobley WC, Wu C (2016) Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. J Clin Invest 126(5):1815–1833

    Article  PubMed  PubMed Central  Google Scholar 

  • Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YW, Thomposn R, Zang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 4:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YW, Chen Y, Liu Y, Zhao Y, Liao FF, Xu H (2013) APP regulates NGF receptor trafficking and NGF-mediated neuronal differentiation and survival. PLoS One 8(11):e80571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W-Q, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134

    Article  CAS  PubMed  Google Scholar 

  • Zhu QB, Unmehopa U, Bossers K, Hu YT, Verwer R, Balesar R, Zhao J, Bao AM, Swaab D (2016) MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease. Brain 139:908–921

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Finanziamento delle Attività Base di Ricerca FFABR to NC. Graphic elaboration of the illustration by VT was partially realized with vectorial images from ‘FreeVector.com’, under Creative Common Attribution 4.0 International (CC BY 4.0). A special thanks to Dr. V. Sposato for her contribution to the experimental work.

The authors apologize for the scientific publications not acknowledged in this manuscript because of space restrictions.

The authors sincerely apologize to all those colleagues whose important work was not cited in this paper owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Canu .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no actual or potential conflicts of interest and that these data are not published elsewhere. In addition all authors approve the study described in this report.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Triaca, V., Ruberti, F., Canu, N. (2021). NGF and the Amyloid Precursor Protein in Alzheimer’s Disease: From Molecular Players to Neuronal Circuits. In: Calzà, L., Aloe, L., Giardino, L. (eds) Recent Advances in NGF and Related Molecules. Advances in Experimental Medicine and Biology(), vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-74046-7_10

Download citation

Publish with us

Policies and ethics