Skip to main content

Olive Leaf (Oleuropein) and Its Role in Cancer: Therapeutic Updates

  • 626 Accesses

Part of the Food Bioactive Ingredients book series (FBC)

Abstract

Oleaeuropea L. commonly known as olive tree has immense health benefits. Traditionally it is used to treat different pathologies such as olive leaves used against coughing, cystitis and sore throat, cardiovascular diseases, mouth cleanser, dried leaves and fruits of olive tree in gastrointestinal problems (diarrhea) and urinary tract infections, hypertension, asthma, and most importantly cancer. The phytochemical analysis revealed rich phytochemical composition of the plant and led to the isolation of more than hundred different compounds, such as flavonoids, biophenols, and terpenoids such as iridoids, secoiridoids, triterpenoids, coumarin.

Similarly, olive leaf possessed a strong bioactive composition with a high concentration of oleuropein (glycosylated secoiridoid). Similarly, olive leaf possessed a strong bioactive composition with a high concentration of oleuropein (glycosylated secoiridoid). The leaf extracts and its derivative compounds have shown potent anticancer effects against different cell lines in different organs. These compounds include oleuropein, maslinic acid, erythrodiol, uvaol, oleanolic acid, hydroxytyrosol, tyrosol. Among others Oleuropein and its derivative compounds (hydroxytyrosol, tyrosol and others) were studied in a several types of cancer cells. In fact, many studies have demonstrated the oleuropein and its derivative have proved pharmacological activity against proliferation of cancer cells and several tumor cell lines by different mechanisms such arrest cell cycle and cause apoptosis in cancerous cells, by modulation of miRNA expression and upregulation and downregulation of several genes. This chapter deals with the anticancer effect exert by O. europaea leaf constituents and its possible anticancer mechanism.

Keywords

  • Olive leaf
  • Anticancer activity
  • Oleaeuropea

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abaza L, Talorete TP, Yamada P, Kurita Y, Zarrouk M, Isoda H (2007) Induction of growth inhibition and differentiation of human leukemia HL-60 cells by a Tunisian gerboui olive leaf extract. Biosci Biotechnol Biochem 71(5):1306–1312

    CrossRef  CAS  PubMed  Google Scholar 

  • Abu-zaiton A, Abu-Albasal M (2012) Water decoction of olive leaf reduces blood glucose in normal and alloxan diabetic rats. In: International conference on medical, biological and pharmaceutical sciences

    Google Scholar 

  • Acquaviva R, Di Giacomo C, Sorrenti V, Galvano F, Santangelo R, Cardile V, Gangia S, D'Orazio N, Abraham NG, Vanella L (2012) Antiproliferative effect of oleuropein in prostate cell lines. Int J Oncol 41(1):31–38

    CAS  PubMed  Google Scholar 

  • Ahmad W, Ali N, Afridi MS, Rahman H, Adnan M, Ullah N, Muhammad U, Ilyas M, Khan H (2017) Phytochemical profile, antimicrobial potential and GC-MS analysis of wild variety of Olea Europaea (Olive) cultivated in Pakistan. Pure Appl Biol 6(1):337

    CAS  Google Scholar 

  • Al-Azzawie HF, Alhamdani M-SS (2006) Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci 78(12):1371–1377

    CrossRef  CAS  PubMed  Google Scholar 

  • Alipieva K, Korkina L, Orhan IE, Georgiev MI (2014) Verbascoside—a review of its occurrence, (bio) synthesis and pharmacological significance. Biotechnol Adv 32(6):1065–1076

    CrossRef  CAS  PubMed  Google Scholar 

  • Ali-Shtayeh MS, Jamous RM, Jamous RM (2012) Complementary and alternative medicine use amongst Palestinian diabetic patients. Complement Ther Clin Pract 18(1):16–21

    CrossRef  PubMed  Google Scholar 

  • Amel B (2013) Traditional treatment of high blood pressure and diabetes in Souk Ahras District. J Pharmacogn Phytother 5(1):12–20

    Google Scholar 

  • Andreadou I, Iliodromitis EK, Mikros E, Constantinou M, Agalias A, Magiatis P, Skaltsounis AL, Kamber E, Tsantili-Kakoulidou A, Kremastinos DT (2006) The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J Nutr 136(8):2213–2219

    CrossRef  CAS  PubMed  Google Scholar 

  • Arbabi S, Rosengart MR, Garcia I, Jelacic S, Maier RV (2001) Epithelial cyclooxygenase-2 expression: a model for pathogenesis of colon cancer. J Surg Res 97(1):60–64

    CrossRef  CAS  PubMed  Google Scholar 

  • Asgharzade S, Sheikhshabani SH, Ghasempour E, Heidari R, Rahmati S, Mohammadi M, Jazaeri A, Amini-Farsani Z (2020) The effect of oleuropein on apoptotic pathway regulators in breast cancer cells. Eur J Pharmacol 886:173509

    CrossRef  CAS  PubMed  Google Scholar 

  • Barbaro B, Toietta G, Maggio R, Arciello M, Tarocchi M, Galli A, Balsano C (2014) Effects of the olive-derived polyphenol oleuropein on human health. Int J Mol Sci 15(10):18508–18524

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellakhdar J, Claisse R, Fleurentin J, Younos C (1991) Repertory of standard herbal drugs in the Moroccan pharmacopoea. J Ethnopharmacol 35(2):123–143

    CrossRef  CAS  PubMed  Google Scholar 

  • Benavente-Garcıa O, Castillo J, Lorente J, Ortuño A, Del Rio J (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68(4):457–462

    CrossRef  Google Scholar 

  • Bendini A, Cerretani L, Carrasco-Pancorbo A, Gómez-Caravaca AM, Segura-Carretero A, Fernández-Gutiérrez A, Lercker G (2007) Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade Alessandra. Molecules 12(8):1679–1719

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi G, Murelli C, Vlahov G (1992) Surface waxes from olive fruits. Phytochemistry 31(10):3503–3506

    CrossRef  CAS  Google Scholar 

  • Bianco A, Lo Scalzo R, Scarpati ML (1993) Isolation of cornoside from Olea europaea and its transformation into halleridone. Phytochemistry 32(2):455–457

    CrossRef  CAS  Google Scholar 

  • Bisignano G, Tomaino A, Cascio RL, Crisafi G, Uccella N, Saija A (1999) On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J Pharm Pharmacol 51(8):971–974

    CrossRef  CAS  PubMed  Google Scholar 

  • Blekas G, Psomiadou E, Tsimidou M, Boskou D (2002) On the importance of total polar phenols to monitor the stability of Greek virgin olive oil. Eur J Lipid Sci Technol 104(6):340–346

    CrossRef  CAS  Google Scholar 

  • Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C (2008) Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer 123(6):1227–1239

    CrossRef  CAS  PubMed  Google Scholar 

  • Boaz M, Leibovitz E, Dayan YB, Wainstein J (2011) Functional foods in the treatment of type 2 diabetes: olive leaf extract, turmeric and fenugreek, a qualitative review. Funct Foods Health Dis 1(11):472–481

    CrossRef  Google Scholar 

  • Bonvino NP, Liang J, McCord ED, Zafiris E, Benetti N, Ray NB, Hung A, Boskou D, Karagiannis TC (2018) OliveNet™: a comprehensive library of compounds from Olea europaea. Database 2018:bay016

    CrossRef  PubMed Central  CAS  Google Scholar 

  • Boskou D (2008) Olive oil: minor constituents and health. CRC Press, Boca Raton

    CrossRef  Google Scholar 

  • Bouallagui Z, Han J, Isoda H, Sayadi S (2011) Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food Chem Toxicol 49(1):179–184

    CrossRef  CAS  PubMed  Google Scholar 

  • Briante R, Patumi M, Terenziani S, Bismuto E, Febbraio F, Nucci R (2002) Olea europaea L. leaf extract and derivatives: antioxidant properties. J Agric Food Chem 50(17):4934–4940

    CrossRef  CAS  PubMed  Google Scholar 

  • Broxmeyer HE, Cooper S, Hangoc G, Kim CH (2005) Stromal cell-derived factor-1/CXCL12 selectively counteracts inhibitory effects of myelosuppressive chemokines on hematopoietic progenitor cell proliferation in vitro. Stem Cells Dev 14(2):199–203

    CrossRef  CAS  PubMed  Google Scholar 

  • Bulotta S, Corradino R, Celano M, Maiuolo J, D’Agostino M, Oliverio M, Procopio A, Filetti S, Russo D (2013) Antioxidant and antigrowth action of peracetylated oleuropein in thyroid cancer cells. J Mol Endocrinol 51(1):181–189

    CrossRef  CAS  PubMed  Google Scholar 

  • Calderón-Montaño JM, Madrona A, Burgos-Moron E, Orta ML, Mateos S, Espartero JL, López-Lázaro M (2013) Selective cytotoxic activity of new lipophilic hydroxytyrosol alkyl ether derivatives. J Agric Food Chem 61(21):5046–5053

    CrossRef  PubMed  CAS  Google Scholar 

  • Campeol E, Flamini G, Cioni PL, Morelli I, D’Andrea F, Cremonini R (2004) 1,5-Anhydroxylitol from leaves of Olea europaea. Carbohydr Res 339(16):2731

    CrossRef  CAS  PubMed  Google Scholar 

  • Cárdeno A, Sánchez-Hidalgo M, Rosillo MA, de la Lastra CA (2013) Oleuropein, a secoiridoid derived from olive tree, inhibits the proliferation of human colorectal cancer cell through downregulation of HIF-1α. Nutr Cancer 65(1):147–156

    CrossRef  PubMed  CAS  Google Scholar 

  • Chandler D, Woldu A, Rahmadi A, Shanmugam K, Steiner N, Wright E, Benavente-García O, Schulz O, Castillo J, Münch G (2010) Effects of plant-derived polyphenols on TNF-α and nitric oxide production induced by advanced glycation endproducts. Mol Nutr Food Res 54(S2):S141–S150

    CrossRef  CAS  PubMed  Google Scholar 

  • Charoenprasert S, Mitchell A (2012) Factors influencing phenolic compounds in table olives (Olea europaea). J Agric Food Chem 60(29):7081–7095

    CrossRef  CAS  PubMed  Google Scholar 

  • Corona G, Tzounis X, Assunta Dessi M, Deiana M, Debnam ES, Visioli F, Spencer JP (2006) The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res 40(6):647–658

    CrossRef  CAS  PubMed  Google Scholar 

  • Corona G, Deiana M, Incani A, Vauzour D, Dessì MA, Spencer JP (2007) Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochem Biophys Res Commun 362(3):606–611

    CrossRef  CAS  PubMed  Google Scholar 

  • D’Angelo S, Manna C, Migliardi V, Mazzoni O, Morrica P, Capasso G, Pontoni G, Galletti P, Zappia V (2001) Pharmacokinetics and metabolism of hydroxytyrosol, a natural antioxidant from olive oil. Drug Metab Dispos 29(11):1492–1498

    PubMed  Google Scholar 

  • Damtoft S, Franzyk H, Jensen SR (1993) Biosynthesis of secoiridoid glucosides in Oleaceae. Phytochemistry 34(5):1291–1299

    CrossRef  CAS  Google Scholar 

  • de la Torre R, Covas MI, Pujadas MA, Fitó M, Farré M (2006) Is dopamine behind the health benefits of red wine? Eur J Nutr 45(5):307–310

    CrossRef  PubMed  CAS  Google Scholar 

  • Dekanski D, Janićijević-Hudomal S, Tadić V, Marković G, Arsić I, Mitrović DM (2009) Phytochemical analysis and gastroprotective activity of an olive leaf extract. J Serb Chem Soc 74(4):367–377

    CrossRef  CAS  Google Scholar 

  • Dimitrios B (2006) Sources of natural phenolic antioxidants. Trends Food Sci Technol 17(9):505–512

    CrossRef  CAS  Google Scholar 

  • Dong L, Marakovits J, Hou X, Guo C, Greasley S, Dagostino E, Ferre R, Johnson MC, Kraynov E, Thomson J (2010) Structure-based design of novel human Pin1 inhibitors (II). Bioorg Med Chem Lett 20(7):2210–2214

    CrossRef  CAS  PubMed  Google Scholar 

  • El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67(11):632–638

    CrossRef  PubMed  Google Scholar 

  • Elamin MH, Daghestani MH, Omer SA, Elobeid MA, Virk P, Al-Olayan EM, Hassan ZK, Mohammed OB, Aboussekhra A (2013) Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells. Food Chem Toxicol 53:310–316

    CrossRef  CAS  PubMed  Google Scholar 

  • Erbay Z, Icier F (2010) A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr 50(5):441–464

    CrossRef  PubMed  Google Scholar 

  • Essafi H, Trabelsi N, Benincasa C, Tamaalli A, Perri E, Zarrouk M (2019) Phytochemical profile, antioxidant and antiproliferative activities of olive leaf extracts from autochthonous Tunisian cultivars. Acta Aliment 48(3):384–390

    CrossRef  CAS  Google Scholar 

  • Esti M, Cinquanta L, La Notte E (1998) Phenolic compounds in different olive varieties. J Agric Food Chem 46(1):32–35

    CrossRef  CAS  PubMed  Google Scholar 

  • Fabiani R, De Bartolomeo A, Rosignoli P, Servili M, Montedoro G, Morozzi G (2002) Cancer chemoprevention by hydroxytyrosol isolated from virgin olive oil through G1 cell cycle arrest and apoptosis. Eur J Cancer Prev 11(4):351–358

    CrossRef  CAS  PubMed  Google Scholar 

  • Fabiani R, De Bartolomeo A, Rosignoli P, Servili M, Selvaggini R, Montedoro GF, Di Saverio C, Morozzi G (2006) Virgin olive oil phenols inhibit proliferation of human promyelocytic leukemia cells (HL60) by inducing apoptosis and differentiation. J Nutr 136(3):614–619

    CrossRef  CAS  PubMed  Google Scholar 

  • Ferrari P, Slimani N, Ciampi A, Trichopoulou A, Naska A, Lauria C, Veglia F, Buenode-Mesquita H, Ocke M, Brustad M (2002) Evaluation of under-and overreporting of energy intake in the 24-hour diet recalls in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 5(6b):1329–1345

    CrossRef  CAS  PubMed  Google Scholar 

  • Flemmig J, Kuchta K, Arnhold J, Rauwald H (2011) Olea europaea leaf (Ph. Eur.) extract as well as several of its isolated phenolics inhibit the gout-related enzyme xanthine oxidase. Phytomedicine 18(7):561–566

    CrossRef  CAS  PubMed  Google Scholar 

  • Fredrickson W (2000) “F and S Group, Inc.” Method and composition for antiviral therapy with olive leaves. US patent 6(117,884)

    Google Scholar 

  • Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040

    CrossRef  CAS  PubMed  Google Scholar 

  • Fu S, Arráez-Roman D, Segura-Carretero A, Menéndez JA, Menéndez-Gutiérrez MP, Micol V, Fernández-Gutiérrez A (2010) Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal Bioanal Chem 397(2):643–654

    CrossRef  CAS  PubMed  Google Scholar 

  • Fujita T, Sezik E, Tabata M, Yesilada E, Honda G, Takeda Y, Tanaka T, Takaishi Y (1995) Traditional medicine in Turkey VII. Folk medicine in middle and west Black Sea regions. Econ Bot 49(4):406

    CrossRef  Google Scholar 

  • Furneri PM, Marino A, Saija A, Uccella N, Bisignano G (2002) In vitro antimycoplasmal activity of oleuropein. Int J Antimicrob Agents 20(4):293–296

    CrossRef  CAS  PubMed  Google Scholar 

  • Garavito RM, Mulichak AM (2003) The structure of mammalian cyclooxygenases. Annu Rev Biophys Biomol Struct 32(1):183–206

    CrossRef  CAS  PubMed  Google Scholar 

  • Gariboldi P, Jommi G, Verotta L (1986) Secoiridoids from Olea europaea. Phytochemistry 25(4):865–869

    CrossRef  CAS  Google Scholar 

  • Gonzalez M, Zarzuelo A, Gamez M, Utrilla M, Jimenez J, Osuna I (1992) Hypoglycemic activity of olive leaf. Planta Med 58(06):513–515

    CrossRef  CAS  PubMed  Google Scholar 

  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa MC (2010) Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev 68(4):191–206

    CrossRef  PubMed  Google Scholar 

  • Guerin J,Reveillere H (1984) Antifungal activity of plant extracts used in therapy. 1: study of 41 plant extracts against 9 fungi species [Saccharomyces pastorianus, Candida albicans, Rhizopus nigricans, Aspergillus niger, Aspergillus fumigatus, Botrytis cinerea, Penicillium digitatum, Fusarium oxysporum, Trichophyton mentagrophytes]. Annales Pharmaceutiques Francaises (France)

    Google Scholar 

  • Guinda A, Lanzón A, Rios J, Albi T (2002) The isolation and quantification of the components from olive leaf: hexane extract. Grasas Aceites 53(4):419–422

    CrossRef  CAS  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):715S–725S

    CrossRef  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, New York

    CrossRef  Google Scholar 

  • Haloui E, Marzouk B, Marzouk Z, Bouraoui A, Fenina N (2011) Hydroxytyrosol and oleuropein from olive leaves: potent anti-inflammatory and analgesic activities. J Food Agric Environ 9(3–4):128–133

    CAS  Google Scholar 

  • Hamdi HK, Castellon R (2005) Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochem Biophys Res Commun 334(3):769–778

    CrossRef  CAS  PubMed  Google Scholar 

  • Han J, Talorete TP, Yamada P, Isoda H (2009) Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology 59(1):45–53

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart AR, Kennedy H, Harvey I (2008) Pancreatic cancer: a review of the evidence on causation. Clin Gastroenterol Hepatol 6(3):275–282

    CrossRef  PubMed  Google Scholar 

  • Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S (2015) Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evid Based Complement Altern Med 2015:541591

    CrossRef  Google Scholar 

  • Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis-the p53 network. J Cell Sci 116(20):4077–4085

    CrossRef  CAS  PubMed  Google Scholar 

  • Hu T, He X-W, Jiang J-G, Xu X-L (2014) Hydroxytyrosol and its potential therapeutic effects. J Agric Food Chem 62(7):1449–1455

    CrossRef  CAS  PubMed  Google Scholar 

  • Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126(4):1821–1835

    CrossRef  CAS  PubMed  Google Scholar 

  • Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288

    CrossRef  CAS  PubMed  Google Scholar 

  • Janahmadi Z, Nekooeian AA, Moaref AR, Emamghoreishi M (2017) Oleuropein attenuates the progression of heart failure in rats by antioxidant and antiinflammatory effects. Naunyn Schmiedeberg’s Arch Pharmacol 390(3):245–252

    CrossRef  CAS  Google Scholar 

  • Jemai H, Bouaziz M, Fki I, El Feki A, Sayadi S (2008) Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem Biol Interact 176(2–3):88–98

    CrossRef  CAS  PubMed  Google Scholar 

  • Jemai H, El Feki A, Sayadi S (2009) Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J Agric Food Chem 57(19):8798–8804

    CrossRef  CAS  PubMed  Google Scholar 

  • Juan ME, Planas JM, Ruiz-Gutierrez V, Daniel H, Wenzel U (2008) Antiproliferative and apoptosis-inducing effects of maslinic and oleanolic acids, two pentacyclic triterpenes from olives, on HT-29 colon cancer cells. Br J Nutr 100(1):36–43

    CrossRef  CAS  PubMed  Google Scholar 

  • Karioti A, Chatzopoulou A, Bilia AR, Liakopoulos G, Stavrianakou S, Skaltsa H (2006) Novel secoiridoid glucosides in Olea europaea leaves suffering from boron deficiency. Biosci Biotechnol Biochem 70(8):1898–1903

    CrossRef  CAS  PubMed  Google Scholar 

  • Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2(3):133–140

    CrossRef  CAS  PubMed  Google Scholar 

  • Khan H, Ahmad W, Hussain I, Imran M, Afridi MS, Ullah S (2019) Phytochemical composition, antioxidant and antimicrobial activities of leaves of Olea europaea wild variety. J Food Meas Charac volume 14, 640–648

    Google Scholar 

  • Khayyal MT, El-Ghazaly MA, Abdallah DM, Nassar NN, Okpanyi SN, Kreuter M-H (2002) Blood pressure lowering effect of an olive leaf extract (Olea europaed) in L-NAME induced hypertension in rats. Arzneimittelforschung 52(11):797–802

    CAS  PubMed  Google Scholar 

  • Kim Y, Choi Y, Park T (2010) Hepatoprotective effect of oleuropein in mice: mechanisms uncovered by gene expression profiling. Biotechnol J 5(9):950–960

    CrossRef  CAS  PubMed  Google Scholar 

  • Kimura Y, Sumiyoshi M (2009) Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice. J Nutr 139(11):2079–2086

    CrossRef  CAS  PubMed  Google Scholar 

  • Kis B, Snipes JA, Isse T, Nagy K, Busija DW (2003) Putative cyclooxygenase-3 expression in rat brain cells. J Cereb Blood Flow Metab 23(11):1287–1292

    CrossRef  CAS  PubMed  Google Scholar 

  • Kok FJ, Kromhout D (2004) Atherosclerosis. Eur J Nutr 43(1):i2–i5

    CrossRef  CAS  Google Scholar 

  • Kontogianni VG, Gerothanassis IP (2012) Phenolic compounds and antioxidant activity of olive leaf extracts. Nat Prod Res 26(2):186–189

    CrossRef  CAS  PubMed  Google Scholar 

  • Kovacic P, Jacintho JD (2001) Mechanisms of carcinogenesis focus on oxidative stress and electron transfer. Curr Med Chem 8(7):773–796

    CrossRef  CAS  PubMed  Google Scholar 

  • Lassi K, Dawson NA (2009) Emerging therapies in castrate-resistant prostate cancer. Curr Opin Oncol 21(3):260–265

    CrossRef  CAS  PubMed  Google Scholar 

  • Lawrendiadis G (1961) Contribution to the knowledge of the medicinal plants of Greece. Planta Med 9(02):164–169

    CrossRef  CAS  Google Scholar 

  • Lee JM, Bernstein A (1995) Apoptosis, cancer and the p53 tumour suppressor gene. Cancer Metastasis Rev 14(2):149–161

    CrossRef  CAS  PubMed  Google Scholar 

  • Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB (2001) Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 90(2–3):105–156

    CrossRef  CAS  PubMed  Google Scholar 

  • Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32(9):790–796

    CrossRef  CAS  PubMed  Google Scholar 

  • Li-Weber M (2013) Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett 332(2):304–312

    CrossRef  CAS  PubMed  Google Scholar 

  • Lo Scalzo R, Scarpati ML (1993) A new secoiridoid from olive wastewaters. J Nat Prod 56(4):621–623

    CrossRef  CAS  Google Scholar 

  • Lockyer S, Yaqoob P, Spencer J, Rowland I (2012) Olive leaf phenolics and cardiovascular risk reduction: physiological effects and mechanisms of action. Nutr Aging 1(2):125–140

    CrossRef  Google Scholar 

  • Lockyer S, Rowland I, Spencer JPE, Yaqoob P, Stonehouse W (2017) Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: a randomised controlled trial. Eur J Nutr 56(4):1421–1432

    CrossRef  CAS  PubMed  Google Scholar 

  • López-Biedma A, Sánchez-Quesada C, Delgado-Rodríguez M, Gaforio JJ (2016) The biological activities of natural lignans from olives and virgin olive oils: a review. J Funct Foods 26:36–47

    CrossRef  CAS  Google Scholar 

  • López-Miranda J, Pérez-Jiménez F, Ros E, De Caterina R, Badimón L, Covas MI, Escrich E, Ordovás JM, Soriguer F, Abia R (2010) Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr Metab Cardiovasc Dis 20(4):284–294

    CrossRef  PubMed  Google Scholar 

  • Maalej A, Bouallagui Z, Hadrich F, Isoda H, Sayadi S (2017) Assessment of Olea europaea L. fruit extracts: phytochemical characterization and anticancer pathway investigation. Biomed Pharmacother 90:179–186

    CrossRef  CAS  PubMed  Google Scholar 

  • Mao W, Shi H, Chen X, Yin Y, Yang T, Ge M, Luo M, Chen D, Qian X (2012) Anti-proliferation and migration effects of oleuropein on human A549 lung carcinoma cells. Lat Am J Pharm 31(8):1217–1221

    CAS  Google Scholar 

  • Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. Transcriptional and translational regulation of stem cells. Springer, New York, pp 329–351

    CrossRef  Google Scholar 

  • Matsui A, Ikeda T, Enomoto K, Hosoda K, Nakashima H, Omae K, Watanabe M, Hibi T, Kitajima M (2000) Increased formation of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Lett 151(1):87–95

    CrossRef  CAS  PubMed  Google Scholar 

  • Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780(11):1325–1336

    CrossRef  CAS  PubMed  Google Scholar 

  • Meirinhos J, Silva BM, ValentÃo P, Seabra RM, Pereira JA, Dias A, Andrade PB, Ferreres F (2005) Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea europaea L.) leaf cultivars. Nat Prod Res 19(2):189–195

    CrossRef  CAS  PubMed  Google Scholar 

  • Micol V, Caturla N, Pérez-Fons L, Más V, Pérez L, Estepa A (2005) The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antivir Res 66(2–3):129–136

    CrossRef  CAS  PubMed  Google Scholar 

  • Mijatovic SA, Timotijevic GS, Miljkovic DM, Radovic JM, Maksimovic-Ivanic DD, Dekanski DP, Stosic-Grujicic SD (2011) Multiple antimelanoma potential of dry olive leaf extract. Int J Cancer 128(8):1955–1965

    CrossRef  CAS  PubMed  Google Scholar 

  • Molina-Alcaide E, Yáñez-Ruiz DR (2008) Potential use of olive by-products in ruminant feeding: a review. Anim Feed Sci Technol 147(1–3):247–264

    CrossRef  CAS  Google Scholar 

  • Moreno-Alías I, León L, de la Rosa R, Rapoport HF (2009) Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees 23(1):181–187

    CrossRef  Google Scholar 

  • Mosele JI, Martín-Peláez S, Macià A, Farràs M, Valls RM, Catalán Ú, Motilva MJ (2014) Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches. Mol Nutr Food Res 58(9):1809–1819

    CrossRef  CAS  PubMed  Google Scholar 

  • Movsumov I, Aliev A (1985) Oleanolic and maslinic acids of the fruit of Olea europaea. Chem Nat Compd 21:125–126

    CrossRef  Google Scholar 

  • Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572

    CrossRef  CAS  PubMed  Google Scholar 

  • Mussini P, Orsini F, Pelizzoni F (1975) Triterpenes in leaves of Olea europaea. Phytochemistry 14(4):1135

    CrossRef  CAS  Google Scholar 

  • Nashwa MF, Abdel-Aziz M (2014) Efficiency of olive (Olea europaea L.) leaf extract as antioxidant and anticancer agents. J Agroaliment Process Technol 20:46–53

    Google Scholar 

  • Nocella C, Cammisotto V, Fianchini L, D’Amico A, Novo M, Castellani V, Stefanini L, Violi F, Carnevale R (2018) Extra virgin olive oil and cardiovascular diseases: benefits for human health. Endocrine Metab Immune Disord Drug Targets 18(1):4–13

    CrossRef  CAS  Google Scholar 

  • Oh JY, Giles N, Landar A, Darley-Usmar V (2008) Accumulation of 15-deoxy-Δ12, 14-prostaglandin J2 adduct formation with Keap1 over time: effects on potency for intracellular antioxidant defence induction. Biochem J 411(2):297–306

    CrossRef  CAS  PubMed  Google Scholar 

  • Omar SH (2010) Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm J 18(3):111–121

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen R, Giacosa A, Hull W, Haubner R, Spiegelhalder B, Bartsch H (2000) The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 36(10):1235–1247

    CrossRef  CAS  PubMed  Google Scholar 

  • Owen R, Haubner R, Mier W, Giacosa A, Hull W, Spiegelhalder B, Bartsch H (2003) Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food Chem Toxicol 41(5):703–717

    CrossRef  CAS  PubMed  Google Scholar 

  • Özcan MM, Matthäus B (2017) A review: benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur Food Res Technol 243(1):89–99

    CrossRef  CAS  Google Scholar 

  • Paiva-Martins F, Gordon MH (2001) Isolation and characterization of the antioxidant component 3, 4-dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate from olive (Olea europaea) leaves. J Agric Food Chem 49(9):4214–4219

    CrossRef  CAS  PubMed  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278

    CrossRef  Google Scholar 

  • Park J, Min J-S, Chae U, Lee JY, Song K-S, Lee H-S, Lee HJ, Lee S-R, Lee D-S (2017) Anti-inflammatory effect of oleuropein on microglia through regulation of Drp1-dependent mitochondrial fission. J Neuroimmunol 306:46–52

    CrossRef  CAS  PubMed  Google Scholar 

  • Patwardhan B, Warude D, Pushpangadan P, Bhatt N (2005) Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med 2(4):465–473

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Peralbo-Molina A, Priego-Capote F, de Castro MDL (2012) Tentative identification of phenolic compounds in olive pomace extracts using liquid chromatography–tandem mass spectrometry with a quadrupole–quadrupole-time-of-flight mass detector. J Agric Food Chem 60(46):11542–11550

    CrossRef  CAS  PubMed  Google Scholar 

  • Pérez-Bonilla M, Salido S, van Beek TA, Linares-Palomino PJ, Altarejos J, Nogueras M, Sánchez A (2006) Isolation and identification of radical scavengers in olive tree (Olea europaea) wood. J Chromatogr A 1112(1–2):311–318

    CrossRef  PubMed  CAS  Google Scholar 

  • Pérez-Bonilla M, Salido S, van Beek TA, de Waard P, Linares-Palomino PJ, Sánchez A, Altarejos J (2011) Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC–DAD–radical scavenging detection. Food Chem 124(1):36–41

    CrossRef  CAS  Google Scholar 

  • Perez-Trujillo M, Gómez-Caravaca AM, Segura-Carretero A, Fernandez-Gutierrez A, Parella T (2010) Separation and identification of phenolic compounds of extra virgin olive oil from Olea Europaea L. by HPLC-DAD-SPE-NMR/MS. Identification of a new diastereoisomer of the aldehydic form of oleuropein aglycone. J Agric Food Chem 58(16):9129–9136

    CrossRef  CAS  PubMed  Google Scholar 

  • Poudyal H, Campbell F, Brown L (2010) Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate–, high fat–fed rats. J Nutr 140(5):946–953

    CrossRef  CAS  PubMed  Google Scholar 

  • Qabaha K, Al-Rimawi F, Qasem A, Naser SA (2018) Oleuropein is responsible for the major anti-inflammatory effects of olive leaf extract. J Med Food 21(3):302–305

    CrossRef  CAS  PubMed  Google Scholar 

  • Rabi T, Bishayee A (2009) Terpenoids and breast cancer chemoprevention. Breast Cancer Res Treat 115(2):223–239

    CrossRef  CAS  PubMed  Google Scholar 

  • Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D, Li Y, Carpenter EL, Attiyeh EF, Diskin SJ (2013) Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res 19(22):6173–6182

    CrossRef  CAS  PubMed  Google Scholar 

  • Rapoport HF, Fabbri A, Sebastiani L (2016) Olive biology. The olive tree genome. Springer, New York, pp 13–25

    CrossRef  Google Scholar 

  • Reiss M (1986) Induction of tumor cell differentiation as a therapeutic approach: preclinical models for hematopoietic and solid neoplasms’ Michael Reiss, Christina Gamba-Vitalo, and Alan C. Sartorelli. Cancer Treat Rep 70(1):201

    CAS  PubMed  Google Scholar 

  • Ribeiro RA, de Barros F, de Melo MMRF, Muniz C, Chieia S, das Graças Wanderley M, Gomes C, Trolin G (1988) Acute diuretic effects in conscious rats produced by some medicinal plants used in the state of Sao Paulo, Brasil. J Ethnopharmacol 24(1):19–29

    CrossRef  Google Scholar 

  • Richard N, Arnold S, Hoeller U, Kilpert C, Wertz K, Schwager J (2011) Hydroxytyrosol is the major anti-inflammatory compound in aqueous olive extracts and impairs cytokine and chemokine production in macrophages. Planta Med 77(17):1890–1897

    CrossRef  CAS  PubMed  Google Scholar 

  • Ritchason J (1999) Olive leaf extract. Woodland Publishing

    Google Scholar 

  • Robles-Almazan M, Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Rodriguez-Garcia C, Quiles JL, Ramirez-Tortosa M (2018) Hydroxytyrosol: bioavailability, toxicity, and clinical applications. Food Res Int 105:654–667

    CrossRef  CAS  PubMed  Google Scholar 

  • Rodríguez G, Lama A, Trujillo M, Espartero JL, Fernández-Bolaños J (2009) Isolation of a powerful antioxidant from Olea europaea fruit-mill waste: 3, 4-Dihydroxyphenylglycol. LWT Food Sci Technol 42(2):483–490

    CrossRef  CAS  Google Scholar 

  • Rodríguez-Morató J, Boronat A, Kotronoulas A, Pujadas M, Pastor A, Olesti E, Perez-Mana C, Khymenets O, Fito M, Farre M (2016) Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol. Drug Metab Rev 48(2):218–236

    CrossRef  PubMed  CAS  Google Scholar 

  • Romagnolo DF, Papoutsis AJ, Selmin O (2010) Nutritional targeting of cyclooxygenase-2 for colon cancer prevention. Inflamm Allergy Drug Targets 9(3):181–191

    CrossRef  CAS  PubMed  Google Scholar 

  • Romero C, Brenes M, Yousfi K, García P, García A, Garrido A (2004) Effect of cultivar and processing method on the contents of polyphenols in table olives. J Agric Food Chem 52(3):479–484

    CrossRef  CAS  PubMed  Google Scholar 

  • Romero C, García A, Medina E, Ruíz-Méndez MV, de Castro A, Brenes M (2010) Triterpenic acids in table olives. Food Chem 118(3):670–674

    CrossRef  CAS  Google Scholar 

  • Salama ZA, Aboul-Enein AM, Gaafar AA, Asker MS, Aly HF, Ahmed HA (2020) In-vitro antioxidant, antimicrobial and anticancer activities of banana leaves (Musa acuminata) and olive leaves (Olea europaea L.) as by-products. Res J Pharm Technol 13(2):687–696

    CrossRef  Google Scholar 

  • Samara P, Christoforidou N, Lemus C, Argyropoulou A, Ioannou K, Vougogiannopoulou K, Aligiannis N, Paronis E, Gaboriaud-Kolar N, Tsitsilonis O (2017) New semi-synthetic analogs of oleuropein show improved anticancer activity in vitro and in vivo. Eur J Med Chem 137:11–29

    CrossRef  CAS  PubMed  Google Scholar 

  • Samet I, Han J, Jlaiel L, Sayadi S, Isoda H (2014) Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism. Oxidative Med Cell Longev 2014:927619

    CrossRef  CAS  Google Scholar 

  • Savarese M, De Marco E, Sacchi R (2007) Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry. Food Chem 105(2):761–770

    CrossRef  CAS  Google Scholar 

  • Savournin C, Baghdikian B, Elias R, Dargouth-Kesraoui F, Boukef K, Balansard G (2001) Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves. J Agric Food Chem 49(2):618–621

    CrossRef  CAS  PubMed  Google Scholar 

  • Scarlett CJ, Smith RC, Saxby A, Nielsen A, Samra JS, Wilson SR, Baxter RC (2006) Proteomic classification of pancreatic adenocarcinoma tissue using protein chip technology. Gastroenterology 130(6):1670–1678

    CrossRef  CAS  PubMed  Google Scholar 

  • Schumacher B, Scholle S, Hölzl J, Khudeir N, Hess S, Müller CE (2002) Lignans isolated from valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A1 adenosine receptors. J Nat Prod 65(10):1479–1485

    CrossRef  CAS  PubMed  Google Scholar 

  • Seçme M, Eroğlu C, Dodurga Y, Bağcı G (2016) Investigation of anticancer mechanism of oleuropein via cell cycle and apoptotic pathways in SH-SY5Y neuroblastoma cells. Gene 585(1):93–99

    CrossRef  PubMed  CAS  Google Scholar 

  • Seifi E, Guerin J, Kaiser B, Sedgley M (2015) Flowering and fruit set in olive: a review. J Plant Physiol 5(2):1263–1272

    Google Scholar 

  • Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634

    CrossRef  CAS  PubMed  Google Scholar 

  • Servili M, Baldioli M, Selvaggini R, Macchioni A, Montedoro G (1999) Phenolic compounds of olive fruit: one-and two-dimensional nuclear magnetic resonance characterization of nüzhenide and its distribution in the constitutive parts of fruit. J Agric Food Chem 47(1):12–18

    CrossRef  CAS  PubMed  Google Scholar 

  • Sheehan KM, Sheahan K, O'Donoghue DP, MacSweeney F, Conroy RM, Fitzgerald DJ, Murray FE (1999) The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA 282(13):1254–1257

    CrossRef  CAS  PubMed  Google Scholar 

  • Soler-Rivas C, Espín JC, Wichers HJ (2000) Oleuropein and related compounds. J Sci Food Agric 80(7):1013–1023

    CrossRef  CAS  Google Scholar 

  • Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12(1):376–390

    CrossRef  CAS  PubMed  Google Scholar 

  • Taamalli A, Arráez-Román D, Barrajón-Catalán E, Ruiz-Torres V, Pérez-Sánchez A, Herrero M, Ibañez E, Micol V, Zarrouk M, Segura-Carretero A (2012) Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: phenolic composition and cytotoxicity against human breast cancer cells. Food Chem Toxicol 50(6):1817–1825

    CrossRef  CAS  PubMed  Google Scholar 

  • Trujillo M, Gallardo E, Madrona A, Bravo L, Sarria B, Gonzalez-Correa JA, Mateos R, Espartero JL (2014) Synthesis and antioxidant activity of nitrohydroxytyrosol and its acyl derivatives. J Agric Food Chem 62(42):10297–10303

    CrossRef  CAS  PubMed  Google Scholar 

  • Tuck KL, Freeman MP, Hayball PJ, Stretch GL, Stupans I (2001) The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats. J Nutr 131(7):1993–1996

    CrossRef  CAS  PubMed  Google Scholar 

  • Tunca B, Tezcan G, Cecener G, Egeli U, Ak S, Malyer H, Tumen G, Bilir A (2012) Olea europaea leaf extract alters microRNA expression in human glioblastoma cells. J Cancer Res Clin Oncol 138(11):1831–1844

    CrossRef  CAS  PubMed  Google Scholar 

  • Veskoukis AS, Tsatsakis AM, Kouretas D (2012) Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones 17(1):11–21

    CrossRef  CAS  PubMed  Google Scholar 

  • Visioli F, Bellosta S, Galli C (1998) Oleuropein, the bitter principle of olives, enhances nitric oxide production by mouse macrophages. Life Sci 62(6):541–546

    CrossRef  CAS  PubMed  Google Scholar 

  • Visioli F, Poli A, Gall C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22(1):65–75

    CrossRef  CAS  PubMed  Google Scholar 

  • Visioli F, Galli C, Grande S, Colonnelli K, Patelli C, Galli G, Caruso D (2003) Hydroxytyrosol excretion differs between rats and humans and depends on the vehicle of administration. J Nutr 133(8):2612–2615

    CrossRef  CAS  PubMed  Google Scholar 

  • Visioli F, Davalos A, López de las Hazas MC, Crespo MC, Tomé-Carneiro J (2020) An overview of the pharmacology of olive oil and its active ingredients. Br J Pharmacol 177:1316–1330

    CrossRef  CAS  PubMed  Google Scholar 

  • Vogel P, Machado IK, Garavaglia J, Zani VT, de Souza D, Dal Bosco SM (2015) Polyphenols benefits of olive leaf (Olea europaea L) to human health. Nutr Hosp 31(3):1427–1433

    Google Scholar 

  • Waggoner SE (2003) Cervical cancer. Lancet 361(9376):2217–2225

    CrossRef  PubMed  Google Scholar 

  • Wahle KW, Caruso D, Ochoa JJ, Quiles JL (2004) Olive oil and modulation of cell signaling in disease prevention. Lipids 39(12):1223

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang D, DuBois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29(6):781–788

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang L, Geng C, Jiang L, Gong D, Liu D, Yoshimura H, Zhong L (2008) The anti-atherosclerotic effect of olive leaf extract is related to suppressed inflammatory response in rabbits with experimental atherosclerosis. Eur J Nutr 47(5):235–243

    CrossRef  PubMed  Google Scholar 

  • Wang X-F, Li C, Shi Y-P, Di D-L (2009) Two new secoiridoid glycosides from the leaves of Olea europaea L. J Asian Nat Prod Res 11(11):940–944

    CrossRef  CAS  PubMed  Google Scholar 

  • Wickrema A, Crispino JD (2007) Erythroid and megakaryocytic transformation. Oncogene 26(47):6803–6815

    CrossRef  CAS  PubMed  Google Scholar 

  • Wren R (1994) FLS, Potter’s new cyclopaedia of botanical drugs and preparations. Pitman Publishing Corporation, New York

    Google Scholar 

  • Yao J, Wu J, Yang X, Yang J, Zhang Y, Du L (2014) Oleuropein induced apoptosis in HeLa cells via a mitochondrial apoptotic cascade associated with activation of the c-Jun NH2-terminal kinase. J Pharmacol Sci 125(3):300–311

    CrossRef  CAS  PubMed  Google Scholar 

  • Yvonne O, Driss F, Dang PM-C, Elbim C, Gougerot-Pocidalo M-A, Pasquier C, El-Benna J (2004) Antioxidant effect of hydroxytyrosol, a polyphenol from olive oil: scavenging of hydrogen peroxide but not superoxide anion produced by human neutrophils. Biochem Pharmacol 68(10):2003–2008

    CrossRef  CAS  Google Scholar 

  • Zarzuelo A, Duarte J, Jimenez J, Gonzalez M, Utrilla M (1991) Vasodilator effect of olive leaf. Planta Med 57(05):417–419

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ansari, B., Küpeli Akkol, E., Khan, H., Shah, M.A. (2021). Olive Leaf (Oleuropein) and Its Role in Cancer: Therapeutic Updates. In: Jafari, S.M., Nabavi, S.M., Silva, A.S. (eds) Nutraceuticals and Cancer Signaling. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-74035-1_14

Download citation