Skip to main content

Two to Trust: AutoML for Safe Modelling and Interpretable Deep Learning for Robustness

  • Conference paper
  • First Online:
Trustworthy AI - Integrating Learning, Optimization and Reasoning (TAILOR 2020)

Abstract

With great power comes great responsibility. The success of machine learning, especially deep learning, in research and practice has attracted a great deal of interest, which in turn necessitates increased trust. Sources of mistrust include matters of model genesis (“Is this really the appropriate model?”) and interpretability (“Why did the model come to this conclusion?”, “Is the model safe from being easily fooled by adversaries?”). In this paper, two partners for the trustworthiness tango are presented: recent advances and ideas, as well as practical applications in industry in (a) Automated machine learning (AutoML), a powerful tool to optimize deep neural network architectures and fine-tune hyperparameters, which promises to build models in a safer and more comprehensive way; (b) Interpretability of neural network outputs, which addresses the vital question regarding the reasoning behind model predictions and provides insights to improve robustness against adversarial attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ecmlpkdd2019.org.

  2. 2.

    https://autodl.chalearn.org/.

References

  1. Alber, M., et al.: iNNvestigate neural networks. JMLR 20(93), 1–8 (2019)

    MathSciNet  Google Scholar 

  2. Amirian, M., Rombach, K., Tuggener, L., Schilling, F.P., Stadelmann, T.: Efficient deep CNNs for cross-modal automated computer vision under time and space constraints. In: ECML-PKDD 2019, Würzburg, Germany, pp. 16–19 (2019)

    Google Scholar 

  3. Amirian, M., Schwenker, F., Stadelmann, T.: Trace and detect adversarial attacks on CNNs using feature response maps. In: Pancioni, L., Schwenker, F., Trentin, E. (eds.) ANNPR 2018. LNCS (LNAI), vol. 11081, pp. 346–358. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99978-4_27

    Chapter  Google Scholar 

  4. Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark analysis of representative deep neural network architectures. IEEE Access 6, 64270–64277 (2018)

    Article  Google Scholar 

  5. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997). https://doi.org/10.1023/A:1007379606734

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., et al.: Learning to learn without gradient descent by gradient descent. In: ICML, pp. 748–756 (2017)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 4171–4186 (2019)

    Google Scholar 

  9. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. arXiv preprint arXiv:1808.05377 (2018)

  10. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410 (2017)

  11. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: NIPS (2015)

    Google Scholar 

  12. Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280 (2017)

  13. Guan, Q., Huang, Y., Zhong, Z., Zheng, Z., Zheng, L., Yang, Y.: Diagnose like a radiologist: attention guided convolutional neural network for thorax disease classification. arXiv preprint arXiv:1801.09927 (2018)

  14. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  15. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  16. Liang, B., Li, H., Su, M., Li, X., Shi, W., Wang, X.: Detecting adversarial examples in deep networks with adaptive noise reduction. arXiv preprint arXiv:1705.08378 (2017)

  17. Lukic, Y., Vogt, C., Dürr, O., Stadelmann, T.: Speaker identification and clustering using convolutional neural networks. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2016)

    Google Scholar 

  18. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.: Automating biomedical data science through tree-based pipeline optimization. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 123–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_9

    Chapter  Google Scholar 

  19. Rajpurkar, P., et al.: MURA: large dataset for abnormality detection in musculoskeletal radiographs. In: 1st Conference on Medical Imaging with Deep Learning (2018)

    Google Scholar 

  20. Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: training differentiable models by constraining their explanations. In: IJCAI, pp. 2662–2670 (2017)

    Google Scholar 

  21. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: NIPS, pp. 3856–3866 (2017)

    Google Scholar 

  22. Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: ICLR (Workshop Track) (2015)

    Google Scholar 

  23. Stadelmann, T., et al.: Deep learning in the wild. In: Pancioni, L., Schwenker, F., Trentin, E. (eds.) ANNPR 2018. LNCS (LNAI), vol. 11081, pp. 17–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99978-4_2

    Chapter  Google Scholar 

  24. Stadelmann, T., Tolkachev, V., Sick, B., Stampfli, J., Dürr, O.: Beyond ImageNet: deep learning in industrial practice. Applied Data Science, pp. 205–232. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11821-1_12

    Chapter  Google Scholar 

  25. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)

    Google Scholar 

  26. Tuggener, L., et al.: Design patterns for resource-constrained automated deep-learning methods. AI 1(4), 510–538 (2020)

    Article  Google Scholar 

  27. Tuggener, L., et al.: Automated machine learning in practice: state of the art and recent results. In: 6th Swiss Conference on Data Science, pp. 31–36. IEEE (2019)

    Google Scholar 

  28. Vanschoren, J.: Meta-learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 35–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_2

    Chapter  Google Scholar 

  29. Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in deep neural networks (2018)

    Google Scholar 

  30. Zhang, Q., Wu, Y.N., Zhu, S.C.: Interpretable convolutional neural networks. In: CVPR, pp. 8827–8836 (2018)

    Google Scholar 

Download references

Acknowledgements

We are grateful for support by Innosuisse grants 25948.1 PFES-ES “Ada” and 26025.1 PFES-ES “QualitAI”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Stadelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amirian, M. et al. (2021). Two to Trust: AutoML for Safe Modelling and Interpretable Deep Learning for Robustness. In: Heintz, F., Milano, M., O'Sullivan, B. (eds) Trustworthy AI - Integrating Learning, Optimization and Reasoning. TAILOR 2020. Lecture Notes in Computer Science(), vol 12641. Springer, Cham. https://doi.org/10.1007/978-3-030-73959-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73959-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73958-4

  • Online ISBN: 978-3-030-73959-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics