Skip to main content

Nanobiotechnology: A Process to Combat Abiotic Stress in Crop Plants

  • Chapter
  • First Online:
Nanobiotechnology

Abstract

In recent years, the dire climatic change has increased the exposure of the crop plants to regular but various types of biotic and abiotic stresses. Reports on abiotic stresses imposing potential adverse effects on crop productivity worldwide are more than biotic stresses. Abiotic stresses mainly drought, salinity, flooding, metal toxicity, and rising temperature due to global warming disrupts the ionic and osmotic balance of the plant cell. As a result, there is restriction of diverse crop farming declining agricultural production over large areas. The declining crop production leads to negative and inevitable effects on the livelihoods of the farmers and mankind for their survival. According to a report, the maximum yield associated with abiotic stress factors is estimated to vary between 54 and 82%. Not only these stresses adversely affect the sustainability of the agricultural industry, but it also threatens the national economy and food security. Therefore, the major challenge is to manage the abiotic stress to improve crop production under abiotic stress. In the changing environmental scenario, nanobiotechnology has gained greater importance to mitigate the constraints associated with environmental stresses and is considered as a promising solution for improving crop production. The present chapter reviews the responses of the crop plants to different abiotic stresses and the potential roles of nanotechnology towards modulating the stress factors in order to secure the future of sustainable agriculture worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elrahman SH, Mostafa MAM (2015) Applications of nanotechnology in agriculture: an overview. Egypt J Soil Sci 55(2):197–214

    Google Scholar 

  • Abobatta WF (2018) Nanotechnology application in agriculture. Acta Scientific Agric 2(6). (ISSN: 2581–365X)

    Google Scholar 

  • Afsharinejad A, Davy A, Jennings B, Brennan C (2016) Performance analysis of plant monitoring nanosensor networks at THz frequencies. IEEE Internet Things J 3:59–69

    Google Scholar 

  • Anand R, Bhagat M (2019) Silver nanoparticles (AgNPs): as nanopesticides and nanofertilizers. MOJ Biol Med 4(1):19–20

    Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Ashraf M, Wu L (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13(1):17–42

    Article  Google Scholar 

  • Aslam Z, Khattak JZK, Ahmed M (2017) Drought tolerance in cereal grain crops under changing climate. In: Ahmed A, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer, Cham, pp 18–209

    Google Scholar 

  • ASTM E2456-06 (2006) Standard terminology relating to nanotechnology, pp 5–6. https://doi.org/10.1520/e2456-06r12

  • Banerjee J, Kole C (2016) Plant nanotechnology: an overview on concepts, strategies and tools. In: Kole C et al (eds) Plant nanotechnology. Springer, Cham. pp 1–14. https://doi.org/10.1007/978-3-319-42154-4_1

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterstigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127(4):1346–1353

    Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBOJ 9:1677–1684

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS et al (2008) Stress-inducible expression of at DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Sci 218(4571):443–448

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. ASPB, Rockville, MD, pp 1158–1203

    Google Scholar 

  • Broman KW, Speed TP (1999) A review of methods for identifying QTLs in experimental crosses. In: Seiller-Moiseiwitsch F (ed) Statistics in molecular biology and genetics, IMS lecture notes monograph series 33, pp 114–142

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2001) Biochemistry and molecular biology of plants. Plant Growth Reg 35:105–106

    Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminium oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7(5):e34783

    Google Scholar 

  • Cakmak I, Yilmaz A, Kalayci M, Ekiz H, Torun B, Ereno B, Braun HJ (1996) Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant and soil 180(2):165–172

    Google Scholar 

  • Calanca PP (2017) Effects of abiotic stress in crop production. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer, Cham, pp 165–180

    Google Scholar 

  • Chen WY, Suzuki T, Lackner M (eds) (2017) Handbook of climate change mitigation and adaptation. Springer International Publishing. https://doi.org/10.1007/978-3-319-14409-2

  • Cheng HN, Klasson KT, Asakura T, Wu Q (2016) Nanotechnology in agriculture. In: Cheng HN, Doemeny L, Geraci CL, Schmidt DG (eds) Nanotechnology: delivering on the promise, vol 2. ACS, Washington, DC, pp 233–242

    Google Scholar 

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 1, Sustainable Agriculture Reviews, vol 20. Springer, Cham. pp 247–282. https://doi.org/10.1007/978-3-319-39303-2

  • Chokriwal A, Sharma MM, Singh A (2014) Biological synthesis of nanoparticles using bacteria and their applications. Am J Pharm Tech Res 4(6):38–61

    Google Scholar 

  • Cramer GR, Urano K, Delrot S et al (2011) Effect of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163. https://doi.org/10.1186/1471-2229-11-163

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3(2):117–124

    Article  CAS  PubMed  Google Scholar 

  • Dahoumane SA, Jeffryes C, Mechouet M, Agathos SN (2017) Biosynthesis of inorganic nanoparticles: a fresh look at the control of shape, size and composition. Bioeng 4(1):14

    Google Scholar 

  • Das S, Yadav A, Debnath N (2019) Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): a comparative analysis. J Stored Prod Res 83:92–96

    Google Scholar 

  • Davies JC (2008) Nanotechnology oversight: an agenda for the new administration. Project on Emerging Nanotechnologies. Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  • Dhankher OP, Li Y, Rosen BP et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotech 20(11):1140–1145

    Article  CAS  Google Scholar 

  • Dresselhaus T, Huckelhoven R (2018) Biotic and abiotic stress responses in crop plants. Agron 8(11):267. https://doi.org/10.3390/agronomy8110267

  • Du W, Yang J, Peng Q et al (2019) Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification. Chemosphere 227:09–116

    Article  CAS  Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:s103–S108

    Article  Google Scholar 

  • Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, India, pp 271–288

    Chapter  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160. https://doi.org/10.1111/j.1399-3054.2008.01135.x

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  CAS  PubMed  Google Scholar 

  • Ghidan AY and Al Antary TM (2019) Applications of nanotechnology in agriculture. In: Applications of nanobiotechnology. IntechOpen

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  PubMed  Google Scholar 

  • Gohari G, Mohammadi A, Akbari A et al (2020) Titanium dioxide nanoparticle (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep 10:912. https://doi.org/10.1038/s41598-020-57794-1

  • Gouma PI, Simon SR, Stanacevic M (2016) Nano-sensing and catalysis technologies for managing food-water-energy (FEW) resources in farming. Mater Today Chem 1(2):40–45

    Article  Google Scholar 

  • Greaves JA (1996) Improving suboptimal temperature tolerance in maize- the search for variation. J Exp Bot 47:307–323

    Google Scholar 

  • Grover A, Kapoor A, Lakshmi OS et al (2001) Understanding molecular alphabets of the plant abiotic stress responses. Curr Sci (Special Section: Plant Mol Biol) 80:206–216

    Google Scholar 

  • Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18(4):275–282

    Article  CAS  Google Scholar 

  • Gupta PK, Rustogi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Func Integr Genomics 4:139–162

    Article  CAS  Google Scholar 

  • Hattori YK, Nagai M, Ashikari (2011) Rice growth adapting to deep water. Curr Opin Plant Biol 14:100–105

    Google Scholar 

  • Hong F, Yang F, Liu C et al (2005) Influence of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260

    Article  CAS  PubMed  Google Scholar 

  • IPCC Climate Change (2014) Synthesis report. Available from: http://www.ipcc.ch/report/ar5/syr/

  • Iqbal M, Raja NI, Hussain M et al (2019) Effect of silver nanoparticles on growth of wheat under heat stress. IJST A Sci 43:387–395

    Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Janmohammadi M, Sabaghnia N, Ahadnezhad A (2015) Impact of silicon dioxide nanoparticles on seedling early growth of lentil (Lens culinaris Medik.) genotypes with various origins. Poljoprivreda i Sumarstvo 61(3):19

    Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231

    Article  CAS  Google Scholar 

  • Kim SW, Jung JH, Lamsal K et al (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiol 40(1):53–58

    Article  CAS  Google Scholar 

  • Kou TJ, Yu WW, Lam SK et al (2018) Differential root responses in two cultivars of winter wheat (Triticum aestivum L.) to elevated ozone concentration under fully open-air field conditions. J Agron Crop Sci 204:325–332

    Article  CAS  Google Scholar 

  • Kumar A, Sengar RS, Singh A, Dixit R, Singh R (2018) Biotechnological tools for enhancing abiotic stress tolerance in plant. In: Sengar R, Singh A (eds) Eco-friendly agro-biological techniques for enhancing crop productivity. Springer, Singapore

    Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151–157

    Article  CAS  Google Scholar 

  • Kwak SY, Wong MH, Lew TTS et al (2017) Nanosensor technology applied to living plant systems. Annu Rev Anal Chem (Palo Alto Calif) 10(1):113–140

    Article  Google Scholar 

  • Lal B, Khanna S (1994) Selection of salt-tolerant Rhizobium isolates of Acacia nilotica. World J Microbiol Biotechnol 10(6):637–639

    Google Scholar 

  • Levitt J (1980) Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses. Academic Press

    Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428. https://doi.org/10.1016/j.envpol.2006.06.008

  • Love JC, Estroff LA, Kriebel JK et al (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1169. https://doi.org/10.1021/cr0300789

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, DoÄŸan Y, Comertpay G, Yıldız M, Baloch FS (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285

    Google Scholar 

  • Niculaes C, Abramov A, Hannemann L, Frey M (2018) Plant protection by benzoxazinoids—recent insights into biosynthesis and function. Agronomy 8(8):143

    Google Scholar 

  • Pallavi Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:254

    Google Scholar 

  • Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 488–497

    Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles: the next generation technology for sustainable agriculture. In: Sing D, Sing H, Prava R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, India, pp 289–300. https://doi.org/10.1007/978-81-322-2644-4_18

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol-Plant 40(1):1–22

    Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503

    Article  PubMed  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ran Y, Liang Z, Gao C (2017) Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60(5):490–505

    Article  CAS  PubMed  Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S et al (2019) Application of silicon nanoparticles in agriculture, vol 3. Biotech 9(3):90

    Google Scholar 

  • Rossi L, Fedenia LN, Sharifan H et al (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

    Article  CAS  PubMed  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticle for revolutionizing agriculture: synthesis and applications. Sci World J Article ID 925494, 8 pages

    Google Scholar 

  • Sangam S, Jayasree D, Reddy KJ, Chari PVB, Sreenivasulu N, Kishor PB (2005) Salt tolerance in plants-transgenic approaches. J Plant Biotechnol 7(1):1–15

    Google Scholar 

  • Sehgal D, Bhat V, Raina SN (2008) Applicability of DNA markers for genome diagnostics of grain legumes. In: Kirti PB (ed) Handbook of new technology for genetic improvement of grain legumes. CRC Press, New York, pp 497–557

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96

    Article  CAS  PubMed  Google Scholar 

  • Shenashen M, Derbalah A, Hamza A et al (2017) Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. Pest Manag Sci 73:1121–1126

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbitapepo L. Environ Toxicol Chem 33(11):2429–2437. https://doi.org/10.1002/etc.2697

  • Singh A, Singh S, Prasad SM (2016) Scope of nanotechnology in crop science: profit or loss. Res Rev J Bot Sci 5(1):1–4

    Google Scholar 

  • Singhal P, Jan AT, Azam M, Haq QMR (2015) Plant abiotic stress: a prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Front Life Sci 9(1):52–63

    Article  CAS  Google Scholar 

  • Tayal D, Srivastava PS, Bansal KC (2004) Transgenic crops for abiotic stress tolerance. In: Plant biotechnology and molecular markers. Kluwer Academic Publishers, Springer, Dordrecht, pp 346–365

    Google Scholar 

  • Tirani MM, Haghjou MM, Ismaili A (2019) Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Funct Plant Biol 46:360–375

    Article  CAS  Google Scholar 

  • United Nations (2017) Department of Economic and Social Affairs, Population Division. World population prospects: the 2017 revision, key findings and advance tables. Working Paper No. ESA/P/WP/248 (ed) New York, United Nations

    Google Scholar 

  • Vanti GL, Nargund VB, Basavesha KN et al (2019) Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl Organomet Chem 33:e4630

    Google Scholar 

  • Vardar F, Yanik F (2015) Toxic effects of Aluminium oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226:296

    Article  CAS  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5(3):361–380. https://doi.org/10.1111/j.1467-7652.2007.00239.x

  • Vijayalakshmi D (2018) Abiotic stress and its management in agriculture. TNAU Agritech, Coimbatore, pp 361–387

    Google Scholar 

  • Wang SH, Wang FY, Gao SC, Wang XG (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227:228

    Google Scholar 

  • Xiao M, Song F, Jiao J et al (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Liu B, Piao S et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114(35):9326–9331. https://doi.org/10.1073/pnas.1701762114

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh C. Naik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kisku, K., Naik, U.C. (2021). Nanobiotechnology: A Process to Combat Abiotic Stress in Crop Plants. In: Al-Khayri, J.M., Ansari, M.I., Singh, A.K. (eds) Nanobiotechnology . Springer, Cham. https://doi.org/10.1007/978-3-030-73606-4_7

Download citation

Publish with us

Policies and ethics