Skip to main content

Potassium Solubilization: Mechanism and Functional Impact on Plant Growth

  • Chapter
  • First Online:
Soil Microbiomes for Sustainable Agriculture

Abstract

A major constituent as well as an essential nutrient of all living cells is potassium (K). This form of K in the soil, however, is not available for uptake by plants. Chemical fertilizers are added to agricultural fields to provide the required K but with negative impact on the environment. K-bearing minerals are solubilized by potassium solubilizing bacteria (KSB) and the insoluble K is converted to soluble K that is easily assimilated by plants. They solubilize K from insoluble forms like mica, fledspar, and others by mechanisms that involve formation of organic acids, siderophores, and also capsular polysaccharides. The diversity and abundance of KSB is dependent on numerous factors, including soil type, climatic conditions, etc. KSB are mostly found in the rhizosphere of plants. These PGPR can be utilized as biofertilizers for sustainable agriculture and can be an efficient substitute to chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea mays) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Google Scholar 

  • Ahmad MS, Zargar MY (2009) Characterization of Potassium Solubilizing Bacteria (KSB) in rhizospheric soils of apple (Malus domestica Borkh.) in temperate Kashmir, 2017. J Appl Life Sci Int 15:1103–2394

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS(2008) Screening offree-living rhizospheric bacteria for their multiple plantgrowth promoting activities. Microbiol Res 163:173–181

    Google Scholar 

  • Aleksandrov VG, Blagodyr RN, Live IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Microchem J 29:111–114

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology. John Wiley and Sons Inc., New York, USA

    Google Scholar 

  • Almeida HJ, Pancelli MA, Prado RM, Cavalcante VS (2015) Effect of K on nutritional status and productivity of peanuts in succession with sugarcane. J Soil Sci Plant Nutr 15:1–10

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfoletts 10:248–257

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeo Chem 19:129–147

    Google Scholar 

  • Avakyan ZA, Pivovarova TA, Karavaiko GI (1986) Properties of a new species. Bacillus mucilaginosus. Mikrobiologiya 55:477–482

    Google Scholar 

  • Badr M, Shafei A, Sharaf El-Deen S (2006a) The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Badr MA, Shafei AM, Sharaf El-Deen SH (2006b) The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agr Biol Sci 2:5–11

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Balamurugan A (2012a) Impact of different temperature, carbon and nitrogen sources on solubilization efficiency of native potassium solubilizing bacteria from tea (Camellia sinensis). J Biol Res 3:36–42

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012b) Influence of K solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7:4250–4259

    Article  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Miner 83:1551–1563

    Google Scholar 

  • Basak B, Biswas D (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Basak B, Biswas D (2012) Modification of waste mica for alternative source of potassium: evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). Lap Lambert Academic Publishing

    Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Miner Manage 8:149–150

    Google Scholar 

  • Bojinova D, Velkova R, Grancharov I, Zhelev S (1997) The bioconversion of tunisian phosphorite using Aspergillus niger. NutrCyc Agroecosys 47:227–232

    Google Scholar 

  • Brar MS, Tiwari KS (2004) Boosting seed cotton yield in Punjab with potassium. Better Crops 88:28–30

    Google Scholar 

  • Calvaruso C, Turpault M-P, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577

    Article  PubMed  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • de la Torre MA, Gomez-Alarcon G, Vizcaino C, Garcia MT (1992) Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Article  Google Scholar 

  • Doman DC, Geiger DR (1979) Effect of exogenously supplied foliar potassium on phloem loading in Beta vulgaris L. Plant Physiol 64:528–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekin Z (2010) Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr J Biotechnol 9:3794–3800

    CAS  Google Scholar 

  • Etisami H, Emami S, Alikhani AH (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects—a review. J Soil Sci Plant Nutr 17:897–911

    Google Scholar 

  • Fatima Z, Zia M, Chaudhary MF (2006) Effect of Rhizobium strains and phosphorus on growth of soybean Glycine max and survival of Rhizobium and P solubilizing bacteria. Pak J Bot 38:459

    Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11:187–196

    Article  CAS  Google Scholar 

  • Gallegos-Cedillo VM, Urrestarazu M, Álvaro JE(2016) Influence of salinity on transport of Nitrates and Potassium by means of the xylem sap content between roots and shoots in young tomato plants. J Soil Sci Plant Nutr 16:991–998

    Google Scholar 

  • Gerke L (1992) Phosphate, aluminum, and iron in the soil solution of three different soils in relation to varying concentrations of citric acid. Z Pflanzenernahr Bodenk 155:17–22

    Google Scholar 

  • Glick BR (2012) Plant Growth-promoting bacteria: mechanisms and applications. Scientifica 2012:9634010

    Article  Google Scholar 

  • Goldstein AH (1994) Involvement of the quino-protein glucose dehydrogenase in the solubilization of exogeneous mineral phosphates by Gram negative bacteria. In: Phosphate in microorganisms: cellular and molecular biology. Cell Mol Biol 197–203

    Google Scholar 

  • Grandstaff DE (1986) The dissolution rate of forsteritic olivine from Hawaiian beach sand. In: Colman SM, Dethier DP (eds) Rates of chemical weathering of rocks and minerals. Academic Press, New York, pp 41–60

    Google Scholar 

  • Groudev SN (1987) Use of heterotrophic micro-organisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Res Rev J Microbiol Biotechnol 2:1–7

    Google Scholar 

  • Han H, Lee K (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han H-S, Lee K (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130

    Article  CAS  Google Scholar 

  • Han HS, Supanjani LKD (2006) Effect of co-inoculation with phosphate and potassiumsolubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H., Schjoerring J, Møller IS, White P (2012) Functions of macronutrients: potassium. In: Marschner P (eds) Marschner’s mineral nutrition of higher plants. Elsevier, Adelaide, pp 178–189

    Google Scholar 

  • He LY, Sheng XF (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al. (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

  • Hosseinpour A, Kalbasi M (2002) Kinetics of non-exchangeable K release from soils and soil separates in some central region of Iran. In: Proceedings of 17th WCSS. Thailand, symposium, vol 54, pp 1–11

    Google Scholar 

  • Huang Z, He L-Y, Sheng X-F, He Z (2013) Weathering of potash feldspar by Bacillus sp. L11. Acta microbiologica Sinica 53:1172–1178

    Google Scholar 

  • Hu G, Huang S, Chen H, Wang F (2010) Binding of four heavy metals to hemicelluloses from rice bran. Food Res Int 43:203–206

    Google Scholar 

  • Hussain Z, Khattak RA, Irshad M, Mahmood Q, An P (2016) Effect of saline irrigation wateron the leachability of salts, growth and chemical composition of wheat (Triticum aestivum L.) insaline-sodic soil supplemented with phosphorus and potassium. J Soil Sci Plant Nutr 16:604–620

    CAS  Google Scholar 

  • Hu XF, Chen J, Guo JF (2006) Two phosphate and potassium solubilizing bacterial isolated from Tiannu Mountain, Zhijiang, China. World J Microbiol Biotechnol. 22:983–990

    Google Scholar 

  • Keshavarz Zarjani J, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    Article  CAS  Google Scholar 

  • Khawilkar SA, RamtekeJR (1993) Response of applied K in cereals in Maharashtra. Agriculture 84–96

    Google Scholar 

  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23: https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal Agric Biotechnol 31: https://doi.org/10.1016/j.bcab.2020.101883

    Article  Google Scholar 

  • Leaungvutiviroj C, Ruangphisarn P, Hansanimitkul P, Shinkawa H, Sasaki K (2010) Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Biosci Biotechnol Biochem 74:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Lian B, Prithiviraj B, Souleimanov A, Smith D (2001) Evidence for the production of chemical compounds analogous to nod factor by the silicate bacterium Bacillus circulans GY92. Microbiol Res 156:289–292

    Article  CAS  PubMed  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lin Q, Rao Z, Sun Y, Yao J, Xing L (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Li YF (1994) The characteristics and function of silicate dissolving bacteria fertilizer. Soil Fert 2:48–49

    Google Scholar 

  • Maqsood M, Shehzad MA, Wahid A, Butt AA (2013) Improving drought tolerance in maize (Zea mays) with potassium application in furrow irrigation systems. Int J Agric Biol 15:1193–1198

    Google Scholar 

  • Marschner H (1995) Functions of mineral nutrients: macronutirents, In: Marschner H (ed) Mineral nutrition of higher plants, 2nd edn. Academic Press, N.Y., pp 299–312

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s Potassium Solubilizing Bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Article  Google Scholar 

  • Mc Afee J (2008) Potassium, a key nutrient for plant growth. Department of Soil and Crop Sciences

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, AeronA, KumarA, KimK, Vivek,BajpaiK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Google Scholar 

  • Muentz A (1890) Surla decomposition desroches etla formation de la terre arable. C R Acad Sci 110:1370–1372

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nayak B (2001) Uptake of potash by different plants with the use of potash mobilizing bacteria (Frateuria aurantia). M.Sc. (Agric) thesis, QUAT, Bhubaneswar

    Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 33:670–681

    Google Scholar 

  • Prajapati K, Sharma M, Modi H (2013a) Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int J Agric Sci 3:181–188

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013b) Growth promoting effect of potassiumsolubilizing microorganisms on okra (Abelmoscusesculantus). Int J Agric Sci Res 3:181–188

    Google Scholar 

  • Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S et al. (2021) Soil Microbiomes for healthy nutrient recycling. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 1–21. https://doi.org/10.1007/978-981-15-6949-4_1

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al. (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

  • Ramamurthy B, Bajaj C (1969) Soil fertility map of India. Indian Agric Res Inst, New Delhi

    Google Scholar 

  • Ramarethinam S, Chandra K (2005) Studies on the effect of potash solubilizing/mobilizing bacteria Frateuria aurantia on brinjal growth and yield. Pestology 11:35–39

    Google Scholar 

  • Ramarethinam S, Chandra K (2006) Studies on the effect of potash solubilizing bacteria Frateuria aurantia (Symbion-K-liquid formulation) on Brinjal (Solanum melongena L.) growth and yield. Pestology 11:35–39

    Google Scholar 

  • Rehanul H (2002) Potassium status of soils in India. Better Crops Int 16:3–5

    Google Scholar 

  • Reitmeir RF (1951) Soil potassium. In: Norman AG (ed) Advances in agronomy II. Academic Press, Inc., New York (NY), pp 113–164

    Google Scholar 

  • Rosa-Magri MM, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Ceccato-Antonini SR (2012) Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 55:577–582

    Article  Google Scholar 

  • Ruangsanka S (2014) Identification of phosphate-solubilizing bacteria from the bamboo rhizosphere. Sci Asia 40:204–211

    Article  Google Scholar 

  • Rudresh D, Shivaprakash M, Prasad R (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28:139–146

    Article  Google Scholar 

  • Saiyad SA, Jhala YK, Vyas R (2015) Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. Int J Sci Res Publ 5:1–6

    Google Scholar 

  • Sangeeth K, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices Aromat Crops 21:118–124

    Google Scholar 

  • Savani VN, Vaioshnav MR, Vaishnav PR, Darji VB (1995) Statistical estimation of relative changes in P content with different levels of applied phosphorus in groundnut. J Gujarat Agric Univ 21:119–123

    Google Scholar 

  • Schilling G, Gransee A, Deubel A, Lezovic G, Ruppel S (1998) Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z Pflanzenernahr. Bodenkd 161:465–478

    Article  CAS  Google Scholar 

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

  • Sharpley AN (1989) Relationship between soil potassium forms and mineralogy. Soil Sci Soc Am J 53:1023–1028

    Article  Google Scholar 

  • Sheng X (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edphicaus strain NBT and its effect on growth of chilli and cotton. Agric Sci China 2:40–41

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Study on the conditions of potassium release by strain NBT of silicate bacteria. Sci Agr Sinica (China) 35:673–677

    Google Scholar 

  • Sindhu SS, ParmarP PhourM (2014) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: ParmarN SinghA (ed) Geomicrobiology and biogeochemistry. Springer, BerlinHeidelberg, pp 175–198

    Chapter  Google Scholar 

  • Singh G, Biswas DR, Marwaha TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33:1236–1251

    Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 1–63

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD, editor. Potassium in agriculture. Madison (WI): ASA, CSSA, pp 201–276

    Google Scholar 

  • Sperber JI (1958) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J Agric Res 9:778–781

    Article  CAS  Google Scholar 

  • Sperberg JI (1958) The incidence of apatite solubilizing organisms in the rhizosphere and soil. Aust J Agric Res Econ 9:778–781

    Google Scholar 

  • Styriakova I, Styriak I, HradilD BezdickaP (2003) The release of iron bearing minerals and dissolution of feldspar by heterotrophic bacteria of Bacillus species. Ceramic Silicaty 47:20–26

    CAS  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3:350–355

    Google Scholar 

  • Surdam RC, MacGowan DB (1988) Oil field waters and sandstone diagenesis. Appl Geo Chem 2:613–620

    Google Scholar 

  • Taha S, Mahmoud S, El-Damaty AH, El-Hafez AA (1969) Activity of phosphate-dissolving bacteria in Egyptian soils. Plant Soil 31:149–160

    Article  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Yadav AN, Bae H (2021) Portraying fungal mechanisms in stress tolerance: perspective for sustainable agriculture. In: Yadav AN (ed) Recent trends in mycological research: Volume 1: agricultural and medical perspective. Springer International Publishing, Cham, pp 269–291. https://doi.org/10.1007/978-3-030-60659-6_12

  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mole Breed 26:307–323

    Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA, Vandevivere P (1996). Laboratory evidence for microbially mediated silicate mineral dissolution in nature. ChemGeol 132:11–17

    Google Scholar 

  • Uroz S, Calvaruso C, Turpault M-P, Pierrat J-C, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usherwood NR (1985) The Role of Potassium in Crop Quality. In: Munson RD (ed) Potassium in agriculture ASA-CSSA-SSSA. Madison, WI, pp 489–513

    Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DL (1994) Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microb Ecol 27:241–251

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution: Volume 1: microbes for sustainable crop production. Springer, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilisers, Plant Soil 255:571–586

    Google Scholar 

  • White PJ, Karley AJ (2010) Potassium, plant cell monographs, pp 199–224

    Google Scholar 

  • Xiao Y, Wang X, Chen W, Huang Q (2017) Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol J 1–8

    Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutr Fert Sci 4:321–330

    Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/jabb.2021.91ed

    Article  Google Scholar 

  • Yadav AN, Kaur T, Devi R, Kour D, Yadav N (2021) Biodiversity and biotechnological applications of extremophilic microbiomes: current research and future challenges. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 278–290. https://doi.org/10.1201/9780429328633-16

  • Yadav AN, Kumar V, Dhaliwal HS, Prasad R, Saxena AK (2018) Microbiome in crops: diversity, distribution, and potential role in crop improvement. In: Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 305–332. https://doi.org/10.1016/B978-0-444-63987-5.00015-3

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2021b) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Yadegari M, Mosadeghzad Z (2012) Biofertilizers effects on quantitative and qualitative yield of Thyme (Thymus vulgaris). Afr J Agri Res 7:4716–4723

    Google Scholar 

  • Yang BM, Yao LX, Li GL, He ZH, Zhou CM (2015) Dynamic changes of nutrition in litchi foliar and effects of potassium-nitrogen fertilization ratio. J Soil Sci Plant Nutr 15:98–110

    Google Scholar 

  • Yu X, Liu X, Zhu T-H, Liu G-H, Mao C (2012) Co-inoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Eur J Soil Biol 50:112–117

    Google Scholar 

  • Zeng X, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium-solubilizingability of Bacillus circulans Z 1–3. Adv Sci Lett 10:173–176

    Article  CAS  Google Scholar 

  • Zhang AM, Zhao GY, Gao TG, Wang W, Li J, Zhang SF, Zhu BC (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47

    Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zord C, Senbayram M, Peiter E (2014) Potassium in agriculture—status and perspective. J Plant Physiol 171:656–659

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to their respective institutions for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanda Vikrant Berde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berde, C.V., Gawde, S.S., Berde, V.B. (2021). Potassium Solubilization: Mechanism and Functional Impact on Plant Growth. In: Yadav, A.N. (eds) Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-73507-4_5

Download citation

Publish with us

Policies and ethics