Skip to main content

Pharmacological Effects of Natural Components Against Ovarian Cancer and Mechanisms

  • Chapter
  • First Online:
Ovarian Cancer: Molecular & Diagnostic Imaging and Treatment Strategies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1330))

Abstract

Ovarian cancer, one of the three leading malignancies in women, has high incidence and mortality worldwide. It is hard to diagnose until very late stages and the 5-year survival rate is very low, due mostly to its distant metastasis. Chemotherapy is currently the most common treatment to inhibit cancer growth, but long-term use could result in resistance and tumor recurrence in addition to damages to normal tissues and functions of the patients. In order to achieve safe and curative effects against cancers, many investigators have focused their attention on traditional Chinese herbal medicines. Paclitaxel, a natural antitumor agent, has significant effects on advanced malignancies including ovarian cancer and is in the standard front-line treatment. Additional natural anticancer substances have continually been discovered for their high effectiveness and low side-effects in ovarian cancer prevention and therapy. In this chapter, we summarize recent work on a selected group of natural components, including lignans, ellagic acid, luteolin, mangiferin, and Acanthopanax senticosus, which have all been demonstrated to reduce the progress of epithelial ovarian cancer in a dose-depend manner, by both in vitro and in vivo experiments. The mechanisms of the anticancer activities by these natural components involve expression suppression of MMP2 and MMP9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins, Y., Holcomb, K., Chapman-Davis, E., Khabele, D., & Farley, J. H. (2014). Gynecologic cancer disparities: A report from the Health Disparities Taskforce of the Society of Gynecologic Oncology. Gynecologic Oncology, 133(2), 353–361.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: A Cancer Journal for Clinicians, 66(1), 7–30.

    Google Scholar 

  3. Bhatt, A., & Glehen, O. (2016). The role of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer: A review. Indian Journal of Surgical Oncology, 7(2), 188–197.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Saucier, J. M., Yu, J., Gaikwad, A., Coleman, R. L., Wolf, J. K., & Smith, J. A. (2007). Determination of the optimal combination chemotherapy regimen for treatment of platinum-resistant ovarian cancer in nude mouse model. Journal of Oncology Pharmacy Practice, 13(1), 39–45.

    Article  CAS  PubMed  Google Scholar 

  5. Al-Anazi, A. F., Qureshi, V. F., Javaid, K., & Qureshi, S. (2011). Preventive effects of phytoestrogens against postmenopausal osteoporosis as compared to the available therapeutic choices: An overview. Journal of Natural Science Biology and Medicine, 2(2), 154–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wietrzyk, J., Grynkiewicz, G., & Opolski, A. (2005). Phytoestrogens in cancer prevention and therapy—Mechanisms of their biological activity. Anticancer Research, 25(3c), 2357–2366.

    CAS  PubMed  Google Scholar 

  7. Wang, L. Q. (2002). Mammalian phytoestrogens: Enterodiol and enterolactone. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 777(1–2), 289–309.

    Article  CAS  PubMed  Google Scholar 

  8. Martinchik, A. N., & Zubtsov, V. V. (2012). [Phytoestrogenis properties of flaxseed lignans]. Voprosy Pitaniia, 81(6):61–66.

    Google Scholar 

  9. Power, K. A., Saarinen, N. M., Chen, J. M., & Thompson, L. U. (2006). Mammalian lignans enterolactone and enterodiol, alone and in combination with the isoflavone genistein, do not promote the growth of MCF-7 xenografts in ovariectomized athymic nude mice. International Journal of Cancer, 118(5), 1316–1320.

    Article  CAS  PubMed  Google Scholar 

  10. Tao, Y. L., Yang, D. H., Zhang, Y. T., Zhang, Y., Wang, Z. Q., Wang, Y. S., Cai, S. Q., & Liu, S. L. (2014). Cloning, expression, and characterization of the beta-glucosidase hydrolyzing secoisolariciresinol diglucoside to secoisolariciresinol from Bacteroides uniformis ZL1. Applied Microbiology and Biotechnology, 98(6), 2519–2531.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, H.-Y., Li, M.-X., Yang, D.-H., Tao, Y.-L., Zhang, Y., & Liu, S.-L. (2014). Biotransformation of the SDG in defatted flaxseed into END co-cultured by three single bacterial colonies. Process Biochemistry, 49(1), 19–24.

    Article  CAS  Google Scholar 

  12. Wang, C. Z., Ma, X. Q., Yang, D. H., Guo, Z. R., Liu, G. R., Zhao, G. X., Tang, J., Zhang, Y. N., Ma, M., Cai, S. Q., et al. (2010). Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiology, 10, 115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mousavi, Y., & Adlercreutz, H. (1992). Enterolactone and estradiol inhibit each other’s proliferative effect on MCF-7 breast cancer cells in culture. The Journal of Steroid Biochemistry and Molecular Biology, 41(3–8), 615–619.

    Article  CAS  PubMed  Google Scholar 

  14. Power, K. A., Ward, W. E., Chen, J. M., Saarinen, N. M., & Thompson, L. U. (2006). Genistein alone and in combination with the mammalian lignans enterolactone and enterodiol induce estrogenic effects on bone and uterus in a postmenopausal breast cancer mouse model. Bone, 39(1), 117–124.

    Article  CAS  PubMed  Google Scholar 

  15. Denis, L., Morton, M. S., & Griffiths, K. (1999). Diet and its preventive role in prostatic disease. European Urology, 35(5–6), 377–387.

    Article  CAS  PubMed  Google Scholar 

  16. Hallund, J., Ravn-Haren, G., Bugel, S., Tholstrup, T., & Tetens, I. (2006). A lignan complex isolated from flaxseed does not affect plasma lipid concentrations or antioxidant capacity in healthy postmenopausal women. The Journal of Nutrition, 136(1), 112–116.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, Y., Liu, Y. E., Cao, J., Zeng, G., Shen, C., Li, Y., Zhou, M., Chen, Y., Pu, W., Potters, L., et al. (2009). Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth. Clinical Cancer Research, 15(16), 5161–5169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prasad, K. (2000). Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. International Journal of Angiology, 9(4), 220–225.

    Article  CAS  Google Scholar 

  19. Adlercreutz, H., Fotsis, T., Bannwart, C., Wahala, K., Makela, T., Brunow, G., & Hase, T. (1986). Determination of urinary lignans and phytoestrogen metabolites, potential antiestrogens and anticarcinogens, in urine of women on various habitual diets. Journal of Steroid Biochemistry, 25(5B), 791–797.

    Article  CAS  PubMed  Google Scholar 

  20. Landete, J. M., Arques, J., Medina, M., Gaya, P., de Las Rivas, B., & Munoz, R. (2016). Bioactivation of phytoestrogens: Intestinal bacteria and health. Critical Reviews in Food Science and Nutrition, 56(11), 1826–1843.

    Article  CAS  PubMed  Google Scholar 

  21. McCann, S. E., Thompson, L. U., Nie, J., Dorn, J., Trevisan, M., Shields, P. G., Ambrosone, C. B., Edge, S. B., Li, H. F., Kasprzak, C., et al. (2010). Dietary lignan intakes in relation to survival among women with breast cancer: The Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Research and Treatment, 122(1), 229–235.

    Article  CAS  PubMed  Google Scholar 

  22. Guglielmini, P., Rubagotti, A., & Boccardo, F. (2012). Serum enterolactone levels and mortality outcome in women with early breast cancer: A retrospective cohort study. Breast Cancer Research and Treatment, 132(2), 661–668.

    Article  CAS  PubMed  Google Scholar 

  23. Buck, K., Zaineddin, A. K., Vrieling, A., Heinz, J., Linseisen, J., Flesch-Janys, D., & Chang-Claude, J. (2011). Estimated enterolignans, lignan-rich foods, and fibre in relation to survival after postmenopausal breast cancer. British Journal of Cancer, 105(8), 1151–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hutchins, A. M., Martini, M. C., Olson, B. A., Thomas, W., & Slavin, J. L. (2001). Flaxseed consumption influences endogenous hormone concentrations in postmenopausal women. Nutrition and Cancer, 39(1), 58–65.

    Article  CAS  PubMed  Google Scholar 

  25. Mali, A. V., Wagh, U. V., Hegde, M. V., Chandorkar, S. S., Surve, S. V., & Patole, M. V. (2012). In vitro anti-metastatic activity of enterolactone, a mammalian lignan derived from flax lignan, and down-regulation of matrix metalloproteinases in MCF-7 and MDA MB 231 cell lines. Indian Journal of Cancer, 49(1), 181–187.

    Article  CAS  PubMed  Google Scholar 

  26. Adlercreutz, H. (1984). Does fiber-rich food containing animal lignan precursors protect against both colon and breast cancer? An extension of the “fiber hypothesis”. Gastroenterology, 86(4), 761–764.

    Article  CAS  PubMed  Google Scholar 

  27. Serraino, M., & Thompson, L. U. (1992). The effect of flaxseed supplementation on the initiation and promotional stages of mammary tumorigenesis. Nutrition and Cancer, 17(2), 153–159.

    Article  CAS  PubMed  Google Scholar 

  28. Bommareddy, A., Zhang, X. Y., Kaushik, R. S., & Dwivedi, C. (2010). Effects of components present in flaxseed on human colon adenocarcinoma Caco-2 cells: Possible mechanisms of flaxseed on colon cancer development in animals. Drug Discov Ther, 4(3), 184–189.

    CAS  PubMed  Google Scholar 

  29. Lindahl, G., Saarinen, N., Abrahamsson, A., & Dabrosin, C. (2011). Tamoxifen, flaxseed, and the lignan enterolactone increase stroma- and cancer cell-derived IL-1Ra and decrease tumor angiogenesis in estrogen-dependent breast cancer. Cancer Research, 71(1), 51–60.

    Article  CAS  PubMed  Google Scholar 

  30. Saarinen, N. M., Abrahamsson, A., & Dabrosin, C. (2010). Estrogen-induced angiogenic factors derived from stromal and cancer cells are differently regulated by enterolactone and genistein in human breast cancer in vivo. International Journal of Cancer, 127(3), 737–745.

    Article  CAS  PubMed  Google Scholar 

  31. Danbara, N., Yuri, T., Tsujita-Kyutoku, M., Tsukamoto, R., Uehara, N., & Tsubura, A. (2005). Enterolactone induces apoptosis and inhibits growth of Colo 201 human colon cancer cells both in vitro and in vivo. Anticancer Research, 25(3B), 2269–2276.

    CAS  PubMed  Google Scholar 

  32. Dikshit, A., Gao, C., Small, C., Hales, K., & Hales, D. B. (2016). Flaxseed and its components differentially affect estrogen targets in pre-neoplastic hen ovaries. The Journal of Steroid Biochemistry and Molecular Biology, 159, 73–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dikshit, A., Gomes Filho, M. A., Eilati, E., McGee, S., Small, C., Gao, C., Klug, T., & Hales, D. B. (2015). Flaxseed reduces the pro-carcinogenic micro-environment in the ovaries of normal hens by altering the PG and oestrogen pathways in a dose-dependent manner. The British Journal of Nutrition, 113(9), 1384–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, H., Liu, J., Wang, S., Zeng, Z., Li, T., Liu, Y., Mastriani, E., Li, Q. H., Bao, H. X., Zhou, Y. J., et al. (2017). Enterolactone has stronger effects than enterodiol on ovarian cancer. J Ovarian Res, 10(1), 49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Spilmont, M., Leotoing, L., Davicco, M. J., Lebecque, P., Mercier, S., Miot-Noirault, E., Pilet, P., Rios, L., Wittrant, Y., & Coxam, V. (2014). Pomegranate and its derivatives can improve bone health through decreased inflammation and oxidative stress in an animal model of postmenopausal osteoporosis. European Journal of Nutrition, 53(5), 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  36. Costantini, S., Rusolo, F., De Vito, V., Moccia, S., Picariello, G., Capone, F., Guerriero, E., Castello, G., & Volpe, M. G. (2014). Potential anti-inflammatory effects of the hydrophilic fraction of pomegranate (Punica granatum L.) seed oil on breast cancer cell lines. Molecules, 19(6), 8644–8660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Faria, A., & Calhau, C. (2011). The bioactivity of pomegranate: Impact on health and disease. Critical Reviews in Food Science & Nutrition, 51(51), 626–634.

    Article  CAS  Google Scholar 

  38. Amin, A. R., Kucuk, O., Khuri, F. R., & Shin, D. M. (2009). Perspectives for cancer prevention with natural compounds. Journal of Clinical Oncology, 27(16), 2712–2725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Syed, D. N., Afaq, F., & Mukhtar, H. (2007). Pomegranate derived products for cancer chemoprevention. Seminars in Cancer Biology, 17(5), 377–385.

    Article  CAS  PubMed  Google Scholar 

  40. Jurenka, J. S. (2008). Therapeutic applications of pomegranate (Punica granatum L.): A review. Alternative Medicine Review: A Journal of Clinical Therapeutic, 13(2), 128–144.

    Google Scholar 

  41. Seeram, N. P., Adams, L. S., Henning, S. M., Niu, Y., Zhang, Y., Nair, M. G., & Heber, D. (2005). In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. Journal of Nutritional Biochemistry, 16(6), 360–367.

    Article  CAS  PubMed  Google Scholar 

  42. Turrini, E., Ferruzzi, L., & Fimognari, C. (2015). Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxidative Medicine & Cellular Longevity, 2015, 1–19.

    Article  Google Scholar 

  43. Lópezlázaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini Reviews in Medicinal Chemistry, 9(1), 31–59.

    Article  Google Scholar 

  44. Amrutha, K., Nanjan, P., Shaji, S. K., Sunilkumar, D., Subhalakshmi, K., Rajakrishna, L., & Banerji, A. (2014). Discovery of lesser known flavones as inhibitors of NF-κB signaling in MDA-MB-231 breast cancer cells—A SAR study. Bioorganic & Medicinal Chemistry Letters, 24(19), 4735–4742.

    Article  CAS  Google Scholar 

  45. Pandurangan, A. K., Dharmalingam, P., Sadagopan, S. K., & Ganapasam, S. (2014). Luteolin inhibits matrix metalloproteinase 9 and 2 in azoxymethane-induced colon carcinogenesis. Human & Experimental Toxicology, 33(11), 1176–1185.

    Article  CAS  Google Scholar 

  46. Seeram, N. P., Henning, S. M., Zhang, Y., Suchard, M., Li, Z., & Heber, D. (2006). Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. Journal of Nutrition, 136(10), 2481–2485.

    Article  CAS  PubMed  Google Scholar 

  47. Gil, M. I., Tomásbarberán, F. A., Hesspierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural & Food Chemistry, 48(10), 4581–4589.

    Article  CAS  Google Scholar 

  48. Mehta, R., & Lansky, E. P. (2004). Breast cancer chemopreventive properties of pomegranate (Punica granatum) fruit extracts in a mouse mammary organ culture. European Journal of Cancer Prevention, 13(4), 345–348.

    Article  CAS  PubMed  Google Scholar 

  49. Tsuda, H., Uehara, N., Iwahori, Y., Asamoto, M., Iigo, M., Nagao, M., Matsumoto, K., Ito, M., & Hirono, I. (1994). Chemopreventive effects of beta-carotene, alpha-tocopherol and five naturally occurring antioxidants on initiation of hepatocarcinogenesis by 2-amino-3-methylimidazo[4,5-f]quinoline in the rat. Japanese Journal of Cancer Research, 85(12), 1214–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tharappel, J. C., Lehmler, H. J., Srinivasan, C., Robertson, L. W., Spear, B. T., & Glauert, H. P. (2008). Effect of antioxidant phytochemicals on the hepatic tumor promoting activity of 3,3′,4,4′-tetrachlorobiphenyl (PCB-77). Food and Chemical Toxicology, 46(11), 3467–3474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shirode, A. B., Kovvuru, P., Chittur, S. V., Henning, S. M., Heber, D., & Reliene, R. (2014). Antiproliferative effects of pomegranate extract in MCF-7 breast cancer cells are associated with reduced DNA repair gene expression and induction of double strand breaks. Molecular Carcinogenesis, 53(6), 458–470.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, L., & Martins-Green, M. (2014). Pomegranate and its components as alternative treatment for prostate cancer. International Journal of Molecular Sciences, 15(9), 14949–14966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jaganathan, S. K., Vellayappan, M. V., Narasimhan, G., & Supriyanto, E. (2014). Role of pomegranate and citrus fruit juices in colon cancer prevention. World Journal of Gastroenterology, 20(16), 4618–4625.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu, H., Zeng, Z., Wang, S., Li, T., Mastriani, E., Li, Q. H., Bao, H. X., Zhou, Y. J., Wang, X., Liu, Y., et al. (2017). Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biology & Therapy, 18(12), 990–999.

    Article  CAS  Google Scholar 

  55. Yoshimi, N., Matsunaga, K., Katayama, M., Yamada, Y., Kuno, T., Qiao, Z., Hara, A., Yamahara, J., & Mori, H. (2001). The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats. Cancer Letters, 163(2), 163–170.

    Article  CAS  PubMed  Google Scholar 

  56. Barreto, J. C., Trevisan, M. T. S., Hull, W. E., Gerhard, E., Brito, E. S., De Beate, P., Gerd, W., Bertold, S., & Owen, R. W. (2008). Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). Journal of Agricultural & Food Chemistry, 56(14), 5599.

    Article  CAS  Google Scholar 

  57. Chavan, J. J., Ghadage, D. M., Kshirsagar, P. R., & Kudale, S. S. (2015). Optimization of extraction techniques and RP-HPLC analysis of antidiabetic and anticancer drug mangiferin from roots of ‘Saptarangi’ (Salacia chinensisL.). Journal of Liquid Chromatography & Related Technologies, 38(9), 963–969.

    Article  CAS  Google Scholar 

  58. Burton-Freeman, B. M., Sandhu, A. K., & Edirisinghe, I. (2017). Mangos and their bioactive components: Adding variety to the fruit plate for health. Food & Function, 8(9), 3010.

    Article  CAS  Google Scholar 

  59. Pinto, M. M., Sousa, M. E., & Nascimento, M. S. (2005). Xanthone derivatives: New insights in biological activities. Current Medicinal Chemistry, 12(21), 2517–2538.

    Article  CAS  PubMed  Google Scholar 

  60. Li, H., Huang, J., Yang, B., Xiang, T., Yin, X., Peng, W., Cheng, W., Wan, J., Luo, F., & Li, H. (2013). Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway. Toxicology & Applied Pharmacology, 272(1), 180–190.

    Article  CAS  Google Scholar 

  61. Rajendran, P., Rengarajan, T., Nishigaki, I., Ekambaram, G., & Sakthisekaran, D. (2014). Potent chemopreventive effect of mangiferin on lung carcinogenesis in experimental Swiss albino mice. Journal of Cancer Research & Therapeutics, 10(4), 1033–1039.

    Article  Google Scholar 

  62. Zhang, B. P., Zhao, J., Li, S. S., Yang, L. J., Zeng, L. L., Chen, Y., & Fang, J. (2014). Mangiferin activates Nrf2-antioxidant response element signaling without reducing the sensitivity to etoposide of human myeloid leukemia cells in vitro. Acta Pharmacologica Sinica, 35(2), 257–266.

    Article  PubMed  CAS  Google Scholar 

  63. Peng, Z. G., Yao, Y. B., Yang, J., Tang, Y. L., & Huang, X. (2015). Mangiferin induces cell cycle arrest at G2/M phase through ATR-Chk1 pathway in HL-60 leukemia cells. Genetics & Molecular Research, 14(2), 4989–5002.

    Article  CAS  Google Scholar 

  64. Pan, L.-L., Wang, A.-Y., Huang, Y.-Q., Luo, Y., & Ling, M. (2014). Mangiferin induces apoptosis by regulating Bcl-2 and Bax expression in the CNE2 nasopharyngeal carcinoma cell line. Asian Pacific Journal of Cancer Prevention, 15(17), 7065–7068.

    Article  PubMed  Google Scholar 

  65. Das, S., Rao, B. N., & Rao, B. S. S. (2011). Mangiferin attenuates methylmercury induced cytotoxicity against IMR-32, human neuroblastoma cells by the inhibition of oxidative stress and free radical scavenging potential. Chemico-Biological Interactions, 193(2), 129–140.

    Article  CAS  PubMed  Google Scholar 

  66. Davydov, M., & Krikorian, A. (2000). Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: A closer look. Journal of Ethnopharmacology, 72(3), 345–393.

    Article  CAS  PubMed  Google Scholar 

  67. Ho-Shan, N., I-Min, L., Juei-Tang, C., Che-Ling, L., & Feng-Lin, H. (2008). Hypoglycemic effect of syringin from Eleutherococcus senticosus in Streptozotocin-induced diabetic rats. Planta Medica, 74(2), 109–113.

    Article  CAS  Google Scholar 

  68. Bahrke, M. S., Morgan, W. P., & Stegner, A. (2009). Is ginseng an ergogenic aid? International Journal of Sport Nutrition & Exercise Metabolism, 19(3), 298–322.

    Article  CAS  Google Scholar 

  69. Eschbach, L. F., Webster, M. J., Boyd, J. C., Mcarthur, P. D., & Evetovich, T. K. (2000). The effect of Siberian ginseng (Eleutherococcus senticosus) on substrate utilization and performance. International Journal of Sport Nutrition & Exercise Metabolism, 10(4), 444–451.

    Article  CAS  Google Scholar 

  70. Arouca, A., & Grassi-Kassisse, D. M. (2013). Eleutherococcus senticosus: Studies and effects. Health, 5(9), 1509–1515.

    Article  Google Scholar 

  71. Nishibe, S., Kinoshita, H., Takeda, H., & Okano, G. (1990). Phenolic compounds from stem bark of Acanthopanax senticosus and their pharmacological effect in chronic swimming stressed rats. Chemical & Pharmaceutical Bulletin, 38(6), 1763–1765.

    Article  CAS  Google Scholar 

  72. Linzhang, H., Hongfang, Z., Baokang, H., Chengjian, Z., Wei, P., & Luping, Q. (2011). Acanthopanax senticosus: Review of botany, chemistry and pharmacology. Die Pharmazie, 66(2), 83–97.

    Google Scholar 

  73. Chen, L. I., Wang, X. Y., Xu-Wei, H. U., Fang, H. T., & Qiao, S. Y. (2008). [Determination of eleutheroside B in antifatigue fraction of Acanthopanax senticosus by HPLC]. Zhongguo Zhong yao za zhi, 33(23):2800–2802.

    Google Scholar 

  74. Verma, R. P., & Hansch, C. (2007). Matrix metalloproteinases (MMPs): Chemical–biological functions and (Q)SARs. Bioorganic & Medicinal Chemistry, 15(6), 2223–2268.

    Article  CAS  Google Scholar 

  75. Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemistry & Biology, 3(11), 895–904.

    Article  CAS  Google Scholar 

  76. Cheung, L. W. T., Leung, P. C. K., & Wong, A. S. T. (2006). Gonadotropin-releasing hormone promotes ovarian cancer cell invasiveness through c-Jun NH2-terminal kinase-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9. Cancer Research, 66(22), 10902–10910.

    Article  CAS  PubMed  Google Scholar 

  77. Lu, Y. M., Rong, M. L., Shang, C., Wang, N., Li, X., Zhao, Y. Y., & Zhang, S. L. (2012). Suppression of HER-2 via siRNA interference promotes apoptosis and decreases metastatic potential of SKOV-3 human ovarian carcinoma cells. Oncology Reports, 29(3), 1133–1139.

    Article  PubMed  CAS  Google Scholar 

  78. Yu, Y., Li, H., Xue, B., Jiang, X., Huang, K., Ge, J., Zhang, H., & Chen, B. (2014). SDF-1/CXCR7 axis enhances ovarian cancer cell invasion by MMP-9 expression through p38 MAPK pathway. DNA & Cell Biology, 33(8), 543–549.

    Article  CAS  Google Scholar 

  79. Langers, A. M., Verspaget, H. W., Hawinkels, L. J., Kubben, F. J., van Duijn, W., van der Reijden, J. J., Hardwick, J. C., Hommes, D. W., & Sier, C. F. (2012). MMP-2 and MMP-9 in normal mucosa are independently associated with outcome of colorectal cancer patients. British Journal of Cancer, 106(9), 1495–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mieszalo, K., Lawicki, S., & Szmitkowski, M. (2016). [The utility of metalloproteinases (MMPs) and their inhibitors (TIMPs) in diagnostics of gynecological malignancies]. Polski Merkuriusz Lekarski, 40(237):193–197.

    Google Scholar 

  81. Turrini, E., Ferruzzi, L., & Fimognari, C. (2015). Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxidative Medicine & Cellular Longevity, 2014, 1–19.

    Article  Google Scholar 

  82. Nair, V., Dai, Z., Khan, M., & Ciolino, H. P. (2011). Pomegranate extract induces cell cycle arrest and alters cellular phenotype of human pancreatic cancer cells. Anticancer Research, 31(9), 2699–2704.

    CAS  PubMed  Google Scholar 

  83. Huang, S. T., Wang, C. Y., Yang, R. C., Wu, H. T., Yang, S. H., Cheng, Y. C., & Pang, J. H. S. (2011). Ellagic acid, the active compound of Phyllanthus urinaria, exerts in vivo anti-angiogenic effect and inhibits MMP-2 activity. Evidence-Based Complementary and Alternative Medicine, 2011(5), 296–297.

    Google Scholar 

  84. Yuan-Chiang, C., Li-Cheng, L., Ming-Hsiu, T., Yu-Jen, C., Yi-Ying, C., Shih-Ping, Y., & Chih-Ping, H. (2013). The inhibitory effect of ellagic acid on cell growth of ovarian carcinoma cells. Evidence-Based Complementary and Alternative Medicine, 2013(2), 386.

    Google Scholar 

  85. Amakura, Y., Mai, O., Tsuji, S., & Tonogai, Y. (2000). High-performance liquid chromatographic determination with photodiode array detection of ellagic acid in fresh and processed fruits. Journal of Chromatography A, 896(1–2), 87–93.

    Article  CAS  PubMed  Google Scholar 

  86. Miean, K. H., & Mohamed, S. (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural & Food Chemistry, 49(6), 3106–3112.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the National Natural Science Foundation of China (NSFC30970119, 81030029, 81271786, NSFC-NIH 81161120416, 81671980, 81871623) and College students’ Innovation & Entrepreneurship project in Heilongjiang Province (201410226047 J.J.K, D.Y.; 201510226020 D.S.L, L.Y., T.L., L.Q., L.L.G.; 201610226095 H.Y.W., Z.H.S. T.T.G., S.J.H., S.G.; 201610226094 Y.Y.Q., M.Y.; 201710226073 S.J.H., S.G.). H.D.L. is supported by a scholarship from China Scholarship Council, CSC No. 201508230143, for an academic visit to the University of Calgary (Univ. of Calgary ID number: 30016355). We also thank the Health and Family Planning Commission of Heilongjiang Province (2016-188), the Fundamental Research Funds for the Provincial Universities (2017JCZX57), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2018064), the China Postdoctoral Science Foundation (2018M630380), and the Heilongjiang Postdoctoral Financial Assistance (LBH-Z18198) program for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Lin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Liu, SL. (2021). Pharmacological Effects of Natural Components Against Ovarian Cancer and Mechanisms. In: Schatten, H. (eds) Ovarian Cancer: Molecular & Diagnostic Imaging and Treatment Strategies. Advances in Experimental Medicine and Biology, vol 1330. Springer, Cham. https://doi.org/10.1007/978-3-030-73359-9_4

Download citation

Publish with us

Policies and ethics