Skip to main content

Sex-Based Differences in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

Cancers are heterogeneous multifactorial diseases consisting of a major public health issue worldwide. Sex disparities are evidenced in cancer incidence, mortality, expression of prognosis factor, response to treatment, and survival. For both sexes, an interplay of intrinsic and environmental factors influences cancer cells and tumor microenvironment (TME) components. The TME cumulates both supportive and communicative functions, contributing to cancer development, progression, and metastasis dissemination. The frontline topics of this chapter are focused on the contribution of sex, via steroid hormones, such as estrogens and androgens, on the following components of the TME: cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), blood and lymphatic endothelial cells, and immunity/inflammatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boese AC, Kim SC, Yin K-J, Lee J-P, Hamblin MH (2017) Sex differences in vascular physiology and pathophysiology: Estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 313(3):524–545

    Article  Google Scholar 

  2. Miller VM (2014) Why are sex and gender important to basic physiology and translational and individualized medicine? Am J Physiol Heart Circ Physiol 306:781–788

    Article  Google Scholar 

  3. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ et al (2020) Sex and gender: Modifiers of health, disease, and medicine. Lancet 396(10250):565–582

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neigh G, Mitzelfelt M (2016) Sex differences in physiology, 1st edn

    Google Scholar 

  5. Paget S (1889) Distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573

    Article  Google Scholar 

  6. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288. https://doi.org/10.1084/jem.133.2.275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicolson GL (1988) Organ specificity of tumor metastasis: Role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7(2):143–188. https://doi.org/10.1007/BF00046483

    Article  CAS  PubMed  Google Scholar 

  8. Hart IR, Fidler IJ (1980) Role of organ selectivity in the determination of metastatic patterns of B16 melanoma - PubMed. Cancer Res 40(7):2281–2287. https://pubmed.ncbi.nlm.nih.gov/7388794/. Accessed 8 Oct 2020

    CAS  PubMed  Google Scholar 

  9. Belli C, Trapani D, Viale G et al (2018) Targeting the microenvironment in solid tumors. Cancer Treat Rev 65:22–32. https://doi.org/10.1016/j.ctrv.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  11. Hanahan D, Coussens LM (2012) Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  12. Soysal SD, Tzankov A, Muenst SE (2015) Role of the tumor microenvironment in breast Cancer. Pathobiology 82(3–4):142–152. https://doi.org/10.1159/000430499

    Article  CAS  PubMed  Google Scholar 

  13. Ribeiro Franco PI, Rodrigues AP, de Menezes LB, Pacheco MM (2020) Tumor microenvironment components: Allies of cancer progression. Pathol Res Pract 216(1):152729. https://doi.org/10.1016/j.prp.2019.152729

    Article  CAS  PubMed  Google Scholar 

  14. Baghban R, Roshangar L, Jahanban-Esfahlan R et al (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signaling CCS 18(1). https://doi.org/10.1186/s12964-020-0530-4

  15. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 20(4). https://doi.org/10.3390/ijms20040840

  16. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596. https://doi.org/10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  17. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  18. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and Cancer. Cell 140(6):883–899. https://doi.org/10.1016/j.cell.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becker A, Thakur B, Weiss J, Kim H, Peinado H, Lyden D (2016) Extracellular vesicles in Cancer: Cell-to-cell mediators of metastasis. Cancer Cell 30(6):836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rubin JB, Lagas JS, Broestl L et al (2020) Sex differences in cancer mechanisms. Biol Sex Differ 11(1). https://doi.org/10.1186/s13293-020-00291-x

  21. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  22. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  23. Ben-Batalla I, Vargas-Delgado ME, Meier L, Loges S (2019) Sexual dimorphism in solid and hematological malignancies. Semin Immunopathol 41(2):251–263. https://doi.org/10.1007/s00281-018-0724-7

    Article  PubMed  Google Scholar 

  24. Mervic L (2012) Time course and pattern of metastasis of cutaneous melanoma differ between men and women. PLoS One 7(3). https://doi.org/10.1371/journal.pone.0032955

  25. Meltzer S, Bakke KM, Rød KL et al (2020) Sex-related differences in primary metastatic site in rectal cancer; associated with hemodynamic factors? Clin Transl Radiat Oncol 21:5–10. https://doi.org/10.1016/j.ctro.2019.11.006

    Article  PubMed  Google Scholar 

  26. Ryu ES, Chang SJ, An J et al (2019) Sex-specific differences in risk factors of lymph node metastasis in patients with early gastric cancer. PLoS One 14(10). https://doi.org/10.1371/journal.pone.0224019

  27. Pal SK, Hurria A (2010) Impact of age, sex, and comorbidity on Cancer therapy and disease progression. J Clin Oncol 28(26):4086–4093. https://doi.org/10.1200/JCO.2009.27.0579

    Article  PubMed  Google Scholar 

  28. Ishibashi H, Suzuki T, Suzuki S et al (2005) Progesterone receptor in non-small cell lung cancer - a potent prognostic factor and possible target for endocrine therapy. Cancer Res 65(14):6450–6458. https://doi.org/10.1158/0008-5472.CAN-04-3087

    Article  CAS  PubMed  Google Scholar 

  29. Holm B, Mellemgaard A, Skov T, Skov BG (2009) Different impact of excision repair cross-complementation group 1 on survival in male and female patients with inoperable non-small-cell lung cancer treated with carboplatin and gemcitabine. J Clin Oncol 27(26):4254–4259. https://doi.org/10.1200/JCO.2008.18.8631

    Article  CAS  PubMed  Google Scholar 

  30. Cook MB, McGlynn KA, Devesa SS, Freedman ND, Anderson WF (2011) Sex disparities in cancer mortality and survival. Cancer Epidemiol Biomark Prev 20(8):1629–1637. https://doi.org/10.1158/1055-9965.EPI-11-0246

    Article  Google Scholar 

  31. Kim HI, Lim H, Moon A (2018) Sex differences in cancer: Epidemiology, genetics and therapy. Biomol Ther 26(4):335–342. https://doi.org/10.4062/biomolther.2018.103

    Article  CAS  Google Scholar 

  32. Sagerup CMT, Småstuen M, Johannesen TB, Helland Å, Brustugun OT (2011) Sex-specific trends in lung cancer incidence and survival: A population study of 40 118 cases. Thorax 66(4):301–307. https://doi.org/10.1136/thx.2010.151621

    Article  PubMed  Google Scholar 

  33. Shin JY, Jung HJ, Moon A (2019) Molecular markers in sex differences in cancer. Toxicol Res 35(4):331–341. https://doi.org/10.5487/TR.2019.35.4.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong M, Cioffi G, Wang J et al (2020) Sex differences in Cancer incidence and survival: A Pan-Cancer analysis. Cancer Epidemiol Biomark Prev 29(7):1389–1397. https://doi.org/10.1158/1055-9965.EPI-20-0036

    Article  Google Scholar 

  35. Cook MB, Dawsey SM, Freedman ND et al (2009) Sex disparities in cancer incidence by period and age. Cancer Epidemiol Biomark Prev 18(4):1174–1182. https://doi.org/10.1158/1055-9965.EPI-08-1118

    Article  Google Scholar 

  36. McCartney G, Mahmood L, Leyland AH, Batty GD, Hunt K (2011) Contribution of smoking-related and alcohol-related deaths to the gender gap in mortality: Evidence from 30 European countries. Tob Control 20(2):166–168. https://doi.org/10.1136/tc.2010.037929

    Article  PubMed  Google Scholar 

  37. Liu-Smith F, Farhat AM, Arce A et al (2017) Sex differences in the association of cutaneous melanoma incidence rates and geographic ultraviolet light exposure. J Am Acad Dermatol 76(3):499–505. https://doi.org/10.1016/j.jaad.2016.08.027

    Article  PubMed  Google Scholar 

  38. Boibessot C, Toren P (2018) Sex steroids in the tumor microenvironment and prostate cancer progression. Endocr Relat Cancer 25(3):R179–R196. https://doi.org/10.1530/ERC-17-0493

    Article  CAS  PubMed  Google Scholar 

  39. Shang Y (2007) Hormones and cancer. Cell Res 17(4):277–279. https://doi.org/10.1038/cr.2007.26

    Article  CAS  PubMed  Google Scholar 

  40. Bolufer P, Collado M, Barragán E et al (2007) The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica 92(3):308–314. https://doi.org/10.3324/haematol.10752

    Article  CAS  PubMed  Google Scholar 

  41. Tevfik Dorak M, Karpuzoglu E (2012) Gender differences in cancer susceptibility: An inadequately addressed issue. Front Genet 3(NOV):1–11. https://doi.org/10.3389/fgene.2012.00268

    Article  Google Scholar 

  42. Schmetzer O, Flörcken A (2012) Sex differences in the drug therapy for oncologic diseases. Handb Exp Pharmacol 214:411–442. https://doi.org/10.1007/978-3-642-30726-3_19

    Article  CAS  Google Scholar 

  43. Smida T, Bruno TC, Stabile LP (2020) Influence of estrogen on the NSCLC microenvironment: A comprehensive picture and clinical implications. Front Oncol 10(February):1–15. https://doi.org/10.3389/fonc.2020.00137

    Article  Google Scholar 

  44. Östman A (2012) The tumor microenvironment controls drug sensitivity. Nat Med 18(9):1332–1334. https://doi.org/10.1038/nm.2938

    Article  CAS  PubMed  Google Scholar 

  45. Sun Y, Campisi J, Higano C et al (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18(9):1359–1368. https://doi.org/10.1038/nm.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilson TR, Fridlyand J, Yan Y et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487(7408):505–509. https://doi.org/10.1038/nature11249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Acharyya S, Oskarsson T, Vanharanta S et al (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178. https://doi.org/10.1016/j.cell.2012.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 20(4). https://doi.org/10.3390/ijms20040840

  49. Swartz MA, Iida N, Roberts EW et al (2012) Tumor microenvironment complexity: Emerging roles in cancer therapy. Am Assoc Cancer Res 72:2473–2480. https://doi.org/10.1158/0008-5472.CAN-12-0122

    Article  CAS  Google Scholar 

  50. Bainbridge P (2013) Wound healing and the role of fibroblasts. J Wound Care 22(8):407–412. https://doi.org/10.12968/jowc.2013.22.8.407

    Article  CAS  PubMed  Google Scholar 

  51. Bourgot I, Primac I, Louis T, Noël A, Maquoi E (2020) Reciprocal interplay between Fibrillar collagens and collagen-binding Integrins: Implications in Cancer progression and metastasis. Front Oncol 10. https://doi.org/10.3389/fonc.2020.01488

  52. Kendall RT, Feghali-Bostwick CA (2014) Fibroblasts in fibrosis: Novel roles and mediators. Front Pharmacol 5(May):1–13. https://doi.org/10.3389/fphar.2014.00123

    Article  CAS  Google Scholar 

  53. Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H (2015) Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. Cancers (Basel) 7(4):2443–2458. https://doi.org/10.3390/cancers7040902

    Article  Google Scholar 

  54. Orimo A, Weinberg RA (2007) Heterogeneity of stromal fibroblasts in tumors. Cancer Biol Therapy 6(4):618–619. https://doi.org/10.4161/cbt.6.4.4255

    Article  CAS  Google Scholar 

  55. Carnet O, Lecomte J, Masset A et al (2015) Mesenchymal stem cells shed Amphiregulin at the surface of lung carcinoma cells in a Juxtracrine manner. Neoplasia 17(7):552–563. https://doi.org/10.1016/j.neo.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Primac I, Maquoi E, Blacher S et al (2019) Stromal integrin α11 regulates PDGFRβ signaling and promotes breast cancer progression. J Clin Invest 129(11):4609–4628. https://doi.org/10.1172/JCI125890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D (2020) Cancer-associated fibroblasts in desmoplastic tumors: Emerging role of integrins. Semin Cancer Biol 62:166–181. https://doi.org/10.1016/j.semcancer.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  58. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  CAS  PubMed  Google Scholar 

  59. Tang D, Gao J, Wang S et al (2016) Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumor Biol 37(2):1889–1899

    Article  CAS  Google Scholar 

  60. Monteran L, Erez N (2019) The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol 10(1835):1–15

    Google Scholar 

  61. Liu T, Han C, Wang S et al (2019) Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J Hematol Oncol 12(86):1–15

    Google Scholar 

  62. Cirillo F, Pellegrino M, Malivindi R et al (2017) GPER is involved in the regulation of the estrogen-metabolizing CYP1B1 enzyme in breast cancer. Oncotarget 8(63):106608–106624. https://doi.org/10.18632/oncotarget.22541

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Cong X, Li Z, Xue Y (2020) Estrogen facilitates gastric cancer cell proliferation and invasion through promoting the secretion of interleukin-6 by cancer-associated fibroblasts. Int Immunopharmacol 78. https://doi.org/10.1016/j.intimp.2019.105937

  64. Daniels G, Lin Gellert L, Melamed J et al (2014) Decreased expression of stromal estrogen receptor α and β in prostate cancer. Am J Transl Res 6(2):140–146

    PubMed  PubMed Central  Google Scholar 

  65. Lai KP, Yamashita S, Huang CK, Yeh S, Chang C (2012) Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines. EMBO Mol Med 4(8):791–807. https://doi.org/10.1002/emmm.201101140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. LeBleu VS, Kalluri R (2018) A peek into cancer-associated fibroblasts: Origins, functions and translational impact. Dis Model Mech 11:1–9

    Article  Google Scholar 

  67. Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E (2020) In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer 146(4):895–905

    Article  CAS  PubMed  Google Scholar 

  68. Liu T, Zhou L, Li D, Andl T, Zhang Y (2019) Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 7(60):1–14

    Google Scholar 

  69. Nishishita R, Morohashi S, Seino H et al (2018) Expression of cancer-associated fibroblast markers in advanced colorectal cancer. Oncol Lett 15(5):6195–6202. https://doi.org/10.3892/ol.2018.8097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Madeo A, Maggiolini M (2010) Nuclear alternate estrogen receptor GPR30 mediates 17β-estradiol - induced gene expression and migration in breast cancer - associated fibroblasts. Cancer Res 70(14):6036–6046. https://doi.org/10.1158/0008-5472.CAN-10-0408

    Article  CAS  PubMed  Google Scholar 

  71. Knower KC, Chand AL, Eriksson N et al (2013) Distinct nuclear receptor expression in stroma adjacent to breast tumors. Breast Cancer Res Treat 142(1):211–223. https://doi.org/10.1007/s10549-013-2716-6

    Article  CAS  PubMed  Google Scholar 

  72. Lappano R, Maggiolini M (2018) GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J Steroid Biochem Mol Biol 176:49–56. https://doi.org/10.1016/j.jsbmb.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  73. Luo H, Yang G, Yu T et al (2014) GPER-mediated proliferation and estradiol production in breast cancer-associated fibroblasts. Endocr Relat Cancer 21(2):355–369. https://doi.org/10.1530/ERC-13-0237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Luo H, Liu M, Luo S et al (2016) Dynamic monitoring of GPER-mediated estrogenic effects in breast cancer associated fibroblasts: An alternative role of estrogen in mammary carcinoma development. Steroids 112:1–11. https://doi.org/10.1016/j.steroids.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  75. Yu T, Yang G, Hou Y et al (2017) Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene 36(15):2131–2145. https://doi.org/10.1038/onc.2016.370

    Article  CAS  PubMed  Google Scholar 

  76. Avagliano A, Granato G, Ruocco MR et al (2018) Metabolic reprogramming of Cancer associated fibroblasts: The slavery of stromal fibroblasts. Biomed Res Int 2018:1–12. https://doi.org/10.1155/2018/6075403

    Article  CAS  Google Scholar 

  77. De Francesco EM, Pellegrino M, Santolla MF et al (2014) GPER mediates activation of HIF1α/VEGF signaling by estrogens. Cancer Res 74(15):4053–4064. https://doi.org/10.1158/0008-5472.CAN-13-3590

    Article  CAS  PubMed  Google Scholar 

  78. Ren J, Guo H, Wu H et al (2015) GPER in CAFs regulates hypoxia-driven breast cancer invasion in a CTGF-dependent manner. Oncol Rep 33(4):1929–1937. https://doi.org/10.3892/or.2015.3779

    Article  CAS  PubMed  Google Scholar 

  79. Vivacqua A, Sebastiani A, Miglietta AM et al (2018) miR-338-3p is regulated by estrogens through GPER in breast cancer cells and cancer-associated fibroblasts (CAFs). Cells 7(11):203. https://doi.org/10.3390/cells7110203

  80. De Marco P, Lappano R, De Francesco EM et al (2016) GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response. Sci Rep 6(December 2015):1–14. https://doi.org/10.1038/srep24354

    Article  CAS  Google Scholar 

  81. Hetzl AC, Montico F, Misitieri R et al (2013) Fibroblast growth factor, estrogen, and prolactin receptor features in different grades of prostatic adenocarcinoma in elderly men. Microsc Res Tech 76(3):321–330. https://doi.org/10.1002/jemt.22170

    Article  CAS  PubMed  Google Scholar 

  82. Salvin S, Yeh C-R, Da J et al (2014) Estrogen receptor α in cancer-associated fibroblasts suppresses prostate cancer invasion via modulation of thrombospondin 2 and matrix metalloproteinase 3. Carcinogenesis 35(6):1301–1309. https://doi.org/10.1093/carcin/bgt488

    Article  CAS  Google Scholar 

  83. Yeh CR, Slavin S, Da J et al (2016) Estrogen receptor α in cancer associated fibroblasts suppresses prostate cancer invasion via reducing CCL5, IL6 and macrophage infiltration in the tumor microenvironment. Mol Cancer 15(1):1–14. https://doi.org/10.1186/s12943-015-0488-9

    Article  CAS  Google Scholar 

  84. Den Boon JA, Pyeon D, Wang SS et al (2015) Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proc Natl Acad Sci U S A 112(25):E3255–E3264. https://doi.org/10.1073/pnas.1509322112

    Article  CAS  Google Scholar 

  85. Kumar MM, Davuluri S, Poojar S et al (2016) Role of estrogen receptor alpha in human cervical cancer-associated fibroblasts: A transcriptomic study. Tumor Biol 37(4):4409–4420. https://doi.org/10.1007/s13277-015-4257-6

    Article  CAS  Google Scholar 

  86. Neuwirt H, Bouchal J, Kharaishvili G et al (2020) Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Cell Commun Signaling CCS 18(1):1–18. https://doi.org/10.1186/s12964-019-0505-5

    Article  CAS  Google Scholar 

  87. Niu Y, Altuwaijri S, Yeh S et al (2008) Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci U S A 105(34):12188–12193. https://doi.org/10.1073/pnas.0804701105

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yu S, Xia S, Yang D et al (2013) Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate cancer epithelial cell growth and invasion. Med Oncol 30(3). https://doi.org/10.1007/s12032-013-0674-9

  89. Ammirante M, Shalapour S, Kang Y, Jamieson CAM, Karin M (2014) Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc Natl Acad Sci U S A 111(41):14776–14781. https://doi.org/10.1073/pnas.1416498111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mishra R, Haldar S, Placencio V et al (2018) Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J Clin Invest 128(10):4472–4484. https://doi.org/10.1172/JCI99397

    Article  PubMed  PubMed Central  Google Scholar 

  91. Clocchiatti A, Ghosh S, Procopio MG et al (2018) Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation. J Clin Invest 128(12):5465–5478. https://doi.org/10.1172/JCI99159

    Article  Google Scholar 

  92. Henshall SM, Quinn DI, Lee CS et al (2001) Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Res 61(2):423–427

    CAS  PubMed  Google Scholar 

  93. Ricciardelli C, Choong CS, Buchanan G et al (2005) Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate 63(1):19–28. https://doi.org/10.1002/pros.20154

    Article  CAS  PubMed  Google Scholar 

  94. Wikström P, Marusic J, Stattin P, Bergh A (2009) Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients. Prostate 69(8):799–809. https://doi.org/10.1002/pros.20927

    Article  CAS  PubMed  Google Scholar 

  95. Singh M, Jha R, Melamed J, Shapiro E, Hayward SW, Lee P (2014) Stromal androgen receptor in prostate development and cancer. Am J Pathol 184(10):2598–2607. https://doi.org/10.1016/j.ajpath.2014.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Leach DA, Need EF, Toivanen R et al (2015) Erratum: Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome [Oncotarget. 2015; 6:16135-16150]. Oncotarget 6(34):36923. https://doi.org/10.18632/oncotarget.6263

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cioni B, Nevedomskaya E, Melis MHM et al (2018) Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol 12(8):1308–1323. https://doi.org/10.1002/1878-0261.12327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liao C-P, Chen L-Y, Luethy A et al (2017) Androgen receptor in Cancer-associated fibroblasts influences Stemness in Cancer cells. Endocr Relat Cancer 24(4):157–170. https://doi.org/10.1530/ERC-16-0138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nash C, Boufaied N, Mills IG, Franco OE, Hayward SW, Thomson AA (2018) Genome-wide analysis of AR binding and comparison with transcript expression in primary human fetal prostate fibroblasts and cancer associated fibroblasts. Mol Cell Endocrinol 471:1–14. https://doi.org/10.1016/j.mce.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  100. Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng. 2014;5:1–17.

    Google Scholar 

  101. Theocharis, Achilleas D, Skandalis SS, Gialeli, Chrysostomi Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 1(97):4–27

    Article  Google Scholar 

  102. Padhi A, Nain AS (2020) ECM in differentiation: A review of matrix structure, composition and mechanical properties. Ann Biomed Eng 48(3):1071–1089. https://doi.org/10.1007/s10439-019-02337-7

    Article  PubMed  Google Scholar 

  103. Barcus CE, Holt EC, Keely PJ, Eliceiri KW, Schuler LA (2015) Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS One 10(1):1–22. https://doi.org/10.1371/journal.pone.0116891

    Article  CAS  Google Scholar 

  104. Jallow F, O’Leary K, Rugowski D, Guerrero J, Ponik S, Schuler L (2019) Dynamic interactions between the extracellular matrix and estrogen activity in progression of ER+ breast cancer. Oncogene 38(43):6913–6925. https://doi.org/10.1038/s41388-019-0941-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):1–24. https://doi.org/10.1101/cshperspect.a005058

    Article  Google Scholar 

  106. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Venning FA, Wullkopf L, Erler JT (2015) Targeting ECM disrupts cancer progression. Front Oncol 5(OCT). https://doi.org/10.3389/fonc.2015.00224

  108. Pankova D, Chen Y, Terajima M et al (2016) Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol Cancer Res 14(3):287–295. https://doi.org/10.1158/1541-7786.MCR-15-0307

    Article  CAS  PubMed  Google Scholar 

  109. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. DMM Dis Model Mech 4(2):165–178. https://doi.org/10.1242/dmm.004077

    Article  CAS  PubMed  Google Scholar 

  110. Gritsenko PG, Ilina O, Friedl P (2012) Interstitial guidance of cancer invasion. J Pathol 226(2):185–199. https://doi.org/10.1002/path.3031

    Article  CAS  PubMed  Google Scholar 

  111. Afratis NA, Klepfish M, Karamanos NK, Sagi I (2018) The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 129:4–15. https://doi.org/10.1016/j.addr.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  112. Winkler J, Abisoye-Ogunniyan A, Metcalf K, Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 11:1–19. https://doi.org/10.1038/s41467-020-18794-x

    Article  CAS  Google Scholar 

  113. Arpino V, Brock M, Gill SE (2015) The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 44-46:247–254. https://doi.org/10.1016/j.matbio.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  114. Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG (2020) Metalloproteinases and their inhibitors: Potential for the development of new therapeutics. Cell 9(5):1–34. https://doi.org/10.3390/cells9051313

    Article  CAS  Google Scholar 

  115. Ren J, Niu G, Wang X, Song T, Hu Z, Ke C (2018) Overexpression of FNDC1 in gastric cancer and its prognostic significance. J Cancer 9(24):4586–4595. https://doi.org/10.7150/jca.27672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Izbicka E, Streeper RT, Michalek JE, Louden CL, Diaz A, Campos DR (2012) Plasma biomarkers distinguish non-small cell lung cancer from asthma and differ in men and women. CANCER GENOMICS PROTEOMICS 9(1):27–35

    CAS  PubMed  Google Scholar 

  117. Andriani F, Landoni E, Mensah M et al (2018) Diagnostic role of circulating extracellular matrix-related proteins in non-small cell lung cancer. BMC Cancer 18(1):1–14. https://doi.org/10.1186/s12885-018-4772-0

    Article  CAS  Google Scholar 

  118. Kousidou OC, Berdiaki A, Kletsas D et al (2008) Estradiol-estrogen receptor: A key interplay of the expression of syndecan-2 and metalloproteinase-9 in breast cancer cells. Mol Oncol 2(3):223–232. https://doi.org/10.1016/j.molonc.2008.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nilsson UW, Garvin S, Dabrosin C (2007) MMP-2 and MMP-9 activity is regulated by estradiol and tamoxifen in cultured human breast cancer cells. Breast Cancer Res Treat 102(3):253–261. https://doi.org/10.1007/s10549-006-9335-4

    Article  CAS  PubMed  Google Scholar 

  120. Hirvonen R, Talvensaari-mattila A, Pääkkö P, Turpeenniemi-Hujanen T (2003) Matrix metalloproteinase-2 ( MMP-2 ) in T 1 – 2 N 0 breast carcinoma. Breast Cancer Res Treat 77:85–91. https://doi.org/10.1023/A:1021152910976

    Article  CAS  PubMed  Google Scholar 

  121. Li HC, Cao DC, Liu Y et al (2004) Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in patients with lymph node-negative breast carcinoma. Breast Cancer Res Treat 88(1):75–85. https://doi.org/10.1007/s10549-004-1200-8

    Article  CAS  PubMed  Google Scholar 

  122. Conklin MW, Eickhoff JC, Riching KM et al (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178(3):1221–1232. https://doi.org/10.1016/j.ajpath.2010.11.076

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kaushik S, Pickup MW, Weaver VM (2016) From transformation to metastasis: Deconstructing the extracellular matrix in breast cancer. Cancer Metastasis Rev 35(4):655–667. https://doi.org/10.1007/s10555-016-9650-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Barcus CE, O’Leary KA, Brockman JL et al (2017) Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res 19(1):1–13. https://doi.org/10.1186/s13058-017-0801-1

    Article  CAS  Google Scholar 

  125. Zanconato F, Battilana G, Cordenonsi M, Piccolo S (2018) YAP/TAZ at the roots of cancer. Cancer Cell 29(6):26–33. https://doi.org/10.1016/j.ccell.2016.05.005.YAP/TAZ

    Article  Google Scholar 

  126. Liao X, Thrasher JB, Pelling J, Holzbeierlein J, Sang QXA, Li B (2003) Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology 144(5):1656–1663. https://doi.org/10.1210/en.2002-0157

    Article  CAS  PubMed  Google Scholar 

  127. Li BY, Liao XB, Fujito A, Thrasher JB, Shen FY, Xu PY (2007) Dual androgen-response elements mediate androgen regulation of MMP-2 expression in prostate cancer cells. Asian J Androl 9(1):41–50. https://doi.org/10.1111/j.1745-7262.2007.00226.x

    Article  PubMed  Google Scholar 

  128. Hara T, Miyazaki H, Lee A, Tran CP, Reiter RE (2008) Androgen receptor and invasion in prostate cancer. Cancer Res 68(4):1128–1135. https://doi.org/10.1158/0008-5472.CAN-07-1929

    Article  CAS  PubMed  Google Scholar 

  129. Ghatak S, Hascall VC, Markwald RR, Misra S (2010) Stromal hyaluronan interaction with epithelial CD44 variants promotes prostate cancer invasiveness by augmenting expression and function of hepatocyte growth factor and androgen receptor. J Biol Chem 285(26):19821–19832. https://doi.org/10.1074/jbc.M110.104273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ko CJ, Huang CC, Lin HY et al (2015) Androgen-induced TMPRSS2 activates matriptase and promotes extracellular matrix degradation, prostate cancer cell invasion, tumor growth, and metastasis. Cancer Res 75(14):2949–2960. https://doi.org/10.1158/0008-5472.CAN-14-3297

    Article  CAS  PubMed  Google Scholar 

  131. Miyamoto H, Altuwaijri S, Cai Y, Messing EM, Chang C (2005) Inhibition of the Akt, cyclooxygenase-2, and matrix metalloproteinase-9 pathways in combination with androgen deprivation therapy: Potential therapeutic approaches for prostate cancer. Mol Carcinog 44(1):1–10. https://doi.org/10.1002/mc.20121

    Article  CAS  PubMed  Google Scholar 

  132. Bonaccorsi L, Carloni V, Muratori M et al (2000) Androgen receptor expression in prostate carcinoma invasive phenotype *. Endocrinology 141(9):3172–3182

    Article  CAS  PubMed  Google Scholar 

  133. Cinar B, Koeneman KS, Edlund M, Prins GS, Zhau HE, Chung LWK (2001) Androgen receptor mediates the reduced tumor growth, enhanced androgen responsiveness, and selected target gene transactivation in a human prostate cancer cell line. Cancer Res 61(19):7310–7317

    CAS  PubMed  Google Scholar 

  134. Aalinkeel R, Nair MPN, Sufrin G et al (2004) Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res 64(15):5311–5321. https://doi.org/10.1158/0008-5472.CAN-2506-2

    Article  CAS  PubMed  Google Scholar 

  135. Di Zazzo E, Galasso G, Giovannelli P et al (2015) Prostate cancer stem cells: The role of androgen and estrogen receptors. Oncotarget 7(1):193–208. https://doi.org/10.18632/oncotarget.6220

    Article  PubMed Central  Google Scholar 

  136. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474. https://doi.org/10.1038/nrc.2017.51

    Article  CAS  PubMed  Google Scholar 

  137. Morfoisse F, Noel A (2019) Lymphatic and blood systems: Identical or fraternal twins? Int J Biochem Cell Biol 114(June):105562. https://doi.org/10.1016/j.biocel.2019.105562

    Article  CAS  PubMed  Google Scholar 

  138. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. https://doi.org/10.1016/j.cell.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  139. Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744. https://doi.org/10.1038/35036374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xi Wang RAK. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol. 2018;81(/):241–330. doi:https://doi.org/10.1016/bs.apha.2017.08.002.Matrix.

    Article  PubMed  Google Scholar 

  141. Garmy-Susini B, Varner JA (2008) Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat Res Biol 6(3–4):155–163. https://doi.org/10.1089/lrb.2008.1011

    Article  CAS  PubMed  Google Scholar 

  142. Hartman RJG, Kapteijn DMC, Haitjema S et al (2020) Intrinsic transcriptomic sex differences in human endothelial cells at birth and in adults are associated with coronary artery disease targets. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-69451-8

  143. Ihionkhan CE, Chambliss KL, Gibson LL, Hahner LD, Mendelsohn ME, Shaul PW (2002) Estrogen causes dynamic alterations in endothelial estrogen receptor expression. Circ Res 91(9):814–820. https://doi.org/10.1161/01.RES.0000038304.62046.4C

    Article  CAS  PubMed  Google Scholar 

  144. Gavin KM, Seals DR, Silver AE, Moreau KL (2009) Vascular endothelial estrogen receptor α is modulated by estrogen status and related to endothelial function and endothelial nitric oxide synthase in healthy women. J Clin Endocrinol Metab 94(9):3513–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Addis R, Campesi I, Fois M et al Human umbilical endothelial cells (HUVECs) have a sex: Characterisation of the phenotype of male and female cells. Biol Sex Differ 2014, 5(1). https://doi.org/10.1186/s13293-014-0018-2

  146. Kim KH, Bender JR (2009) Membrane-initiated actions of estrogen on the endothelium. Mol Cell Endocrinol 308(1–2):3–8. https://doi.org/10.1016/j.mce.2009.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kleinert, H., Wallerath, T., Euchenhofer, C., Ihrig-Biedert, I., Li, H., Förstermann, U. (1998). Estrogens increase transcription of the human endothelial NO synthase gene analysis of the transcription factors involved. http://ahajournals.org.

  148. Sumi, D., Ignarro, L. J. (2003). Estrogen-related receptor 1 up-Regulates endothelial nitric oxide synthase expression. www.pnas.orgcgidoi10.1073pnas.2235590100.

    Google Scholar 

  149. Martin, J. H. J., Alalami, O., Van Den Berg, H. W.. Reduced expression of endothelial and inducible nitric oxide synthase in a human breast cancer cell line which has acquired estrogen independence.

    Google Scholar 

  150. Martin, J. H. J., Begum, S., Alalami, O., Harrison, A., Scott, K. W. M. (2000). Endothelial nitric oxide synthase: Correlation with histologic grade, lymph node status and estrogen receptor expression in human breast cancer. Vol 21.www.karger.com/journals/tbi.

  151. Fujimoto J, Toyoki H, Jahan I et al (2005) Sex steroid-dependent angiogenesis in uterine endometrial cancers. J Steroid Biochem Mol Biol 93:161–165. https://doi.org/10.1016/j.jsbmb.2004.12.021

    Article  CAS  PubMed  Google Scholar 

  152. Marquez-Garban DC, Mah V, Alavi M et al (2011) Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer. Steroids 76(9):910–920. https://doi.org/10.1016/j.steroids.2011.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dubois C, Rocks N, Blacher S et al (2019) Lymph/angiogenesis contributes to sex differences in lung cancer through oestrogen receptor alpha signalling. Endocr Relat Cancer 26(2). https://doi.org/10.1530/ERC-18-0328

  154. Péqueux C, Raymond-Letron I, Blacher S et al (2012) Stromal estrogen receptor-α promotes tumor growth by normalizing an increased angiogenesis. Cancer Res 72(12):3010–3019. https://doi.org/10.1158/0008-5472.CAN-11-3768

    Article  CAS  PubMed  Google Scholar 

  155. Wang C, Li J, Ye S et al (2017) Oestrogen inhibits VEGF expression and angiogenesis in triple-negative breast cancer by activating GPER-1. J Ind Manag Optim 13(5):3802–3811. https://doi.org/10.7150/jca.29233

    Article  CAS  Google Scholar 

  156. Death AK, McGrath KCY, Sader MA et al (2004) Dihydrotestosterone promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a nuclear factor-κB-dependent pathway. Endocrinology 145(4):1889–1897. https://doi.org/10.1210/en.2003-0789

    Article  CAS  PubMed  Google Scholar 

  157. Schlesinger M, Bendas G (2015) Vascular cell adhesion molecule-1 (VCAM-1) – An increasing insight into its role in tumorigenicity and metastasis. Int J Cancer 136(11):2504–2514. https://doi.org/10.1002/ijc.28927

    Article  CAS  PubMed  Google Scholar 

  158. Piali, L., Fichtd, A., Terpe, H-J., Imhof, B. A., & Gisler, R. H.. Endothelial vascular cell adhesion molecule expression is suppressed by melanoma and carcinoma.

    Google Scholar 

  159. Dirkx, A. E. M., Oude Egbrink, G. A., Kuijpers, M. J. E., et al. (2003). Tumor angiogenesis modulates Leukocyte-Vessel wall interactions in vivo by reducing endothelial adhesion molecule expression 1. Vol 63. http://www.fdg.unimaas.nl/angiogenesislab.

  160. Torres-Estay V, Carreño DV, San Francisco IF, Sotomayor P, Godoy AS, Smith GJ (2015) Androgen receptor in human endothelial cells. J Endocrinol 224(3):R131–R137. https://doi.org/10.1530/JOE-14-0611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Huo YN, Der YS, Sen LW (2019) Androgen receptor activation reduces the endothelial cell proliferation through activating the cSrc/AKT/p38/ERK/NFκB-mediated pathway. J Steroid Biochem Mol Biol 194. https://doi.org/10.1016/j.jsbmb.2019.105459

  162. Nheu L, Nazareth L, Xu GY et al (2011) Physiological effects of androgens on human vascular endothelial and smooth muscle cells in culture. Steroids 76(14):1590–1596. https://doi.org/10.1016/j.steroids.2011.09.015

    Article  CAS  PubMed  Google Scholar 

  163. Mabjeesh, N. J., Willard, M. T., Frederickson, C. E., Zhong, H., & Simons, J. W. (2003). Androgens stimulate Hypoxia-Inducible factor 1 activation via Autocrine loop of Tyrosine Kinase Receptor/Phosphatidylinositol 3-Kinase/Protein Kinase B in Prostate Cancer Cells 1.

    Google Scholar 

  164. Boddy JL, Fox SB, Han C et al (2005) The androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a, HIF-2a, and the prolyl hydroxylases in human prostate cancer. Clin Cancer Res 11(21):7658–7663. https://doi.org/10.1158/1078-0432.CCR-05-0460

    Article  CAS  PubMed  Google Scholar 

  165. Kardideh B, Samimi Z, Norooznezhad F, Kiani S, Mansouri K (2019) Autophagy, cancer and angiogenesis: Where is the link? Cell Biosci 9(1). https://doi.org/10.1186/s13578-019-0327-6

  166. Schaaf MB, Houbaert D, Meçe O, Agostinis P (2019) Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ 26(4):665–679. https://doi.org/10.1038/s41418-019-0287-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438(7070):946–953. https://doi.org/10.1038/nature04480

    Article  CAS  PubMed  Google Scholar 

  168. Ma Q, Dieterich LC, Detmar M (2018) Multiple roles of lymphatic vessels in tumor progression. Curr Opin Immunol 53:7–12. https://doi.org/10.1016/j.coi.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  169. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14(3):159–172. https://doi.org/10.1038/nrc3677

    Article  CAS  PubMed  Google Scholar 

  170. Dieterich LC, Detmar M (2016) Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 99:148–160. https://doi.org/10.1016/j.addr.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  171. Fontaine C, Morfoisse F, Tatin F et al (2020) The impact of estrogen receptor in arterial and lymphatic vascular diseases. Int J Mol Sci 21(9). https://doi.org/10.3390/ijms21093244

  172. Morfoisse F, Tatin F, Chaput B et al (2018) Lymphatic vasculature requires estrogen receptor-α signaling to protect from lymphedema. Arterioscler Thromb Vasc Biol 38(6):1346–1357. https://doi.org/10.1161/ATVBAHA.118.310997

    Article  CAS  PubMed  Google Scholar 

  173. Dubois C, Rocks N, Blacher S et al (2019) Lymph/angiogenesis contributes to sex differences in lung cancer through oestrogen receptor alpha signalling. Endocr Relat Cancer 26(2):201–216. https://doi.org/10.1530/ERC-18-0328

    Article  CAS  PubMed  Google Scholar 

  174. Niemiec J, Sas-Korczynska B, Harazin-Lechowska A, Martynow D, Adamczyk A (2015) Lymphatic and blood vessels in male breast cancer. Anticancer Res 35(2):1041–1048

    PubMed  Google Scholar 

  175. Hunter S, Nault B, Ugwuagbo KC, Maiti S, Majumder M (2019) Mir526b and mir655 promote tumour associated angiogenesis and lymphangiogenesis in breast cancer. Cancers (Basel) 11(7). https://doi.org/10.3390/cancers11070938

  176. Vottero GV, Morfoisse F, Durré T et al (2019) Contralateral vascularized lymph node transfer: An optimized mouse model. J Reconstr Microsurg Open 04(02):e83–e91. https://doi.org/10.1055/s-0039-3400243

    Article  Google Scholar 

  177. Rockson SG, Keeley V, Kilbreath S, Szuba A, Towers A (2019) Cancer-associated secondary lymphoedema. Nat Rev Dis Prim 5(1). https://doi.org/10.1038/s41572-019-0072-5

  178. Parkin J, Cohen B (2001) Overview of the immune system. Lancet Oncol 357:1777–1789. https://doi.org/10.1016/B978-0-323-39981-4.00004-X

    Article  CAS  Google Scholar 

  179. Oertelt-Prigione S (2012) The influence of sex and gender on the immune response. Autoimmun Rev 11(6–7). https://doi.org/10.1016/j.autrev.2011.11.022

  180. Jaillon S, Berthenet K, Garlanda C (2019) Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol 56(3):308–321. https://doi.org/10.1007/s12016-017-8648-x

    Article  CAS  PubMed  Google Scholar 

  181. Furman D (2015) Sexual dimorphism in immunity: Improving our understanding of vaccine immune responses in men. Expert Rev Vaccines 14(3):461–471. https://doi.org/10.1586/14760584.2015.966694

    Article  CAS  PubMed  Google Scholar 

  182. Ortona E, Pierdominici M, Rider V (2019) Editorial: Sex hormones and gender differences in immune responses. Front Immunol 10(MAY). https://doi.org/10.3389/fimmu.2019.01076

  183. Libert C, Dejager L, Pinheiro I (2010) The X chromosome in immune functions: When a chromosome makes the difference. Nat Rev Immunol. https://doi.org/10.1038/nri2815

  184. Selmi C, Brunetta E, Raimondo MG, Meroni PL (2012) The X chromosome and the sex ratio of autoimmunity. Autoimmun Rev 11(6–7). https://doi.org/10.1016/j.autrev.2011.11.024

  185. Ghorai A, Ghosh U (2014) miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front Genet. https://doi.org/10.3389/fgene.2014.00100

  186. Pinheiro I, Dejager L, Libert C (2011) X-chromosome-located microRNAs in immunity: Might they explain male/female differences?: The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. BioEssays 33(11):791–802. https://doi.org/10.1002/bies.201100047

    Article  CAS  PubMed  Google Scholar 

  187. Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-α-bound human chromatin interactome. Nature 462(7269):58–64. https://doi.org/10.1038/nature08497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Atala A (2015) Re: Brain feminization requires active repression of masculinization via DNA methylation. J Urol 194(6):1823–1824. https://doi.org/10.1016/j.juro.2015.09.001

    Article  PubMed  Google Scholar 

  189. Castro A, Pyke RM, Zhang X et al (2020) Strength of immune selection in tumors varies with sex and age. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-17981-0

  190. Kovats S (2015) Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol 294(2):63–69. https://doi.org/10.1016/j.cellimm.2015.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Moulton VR (2018) Sex hormones in acquired immunity and autoimmune disease. Front Immunol 9(OCT):1–21. https://doi.org/10.3389/fimmu.2018.02279

    Article  CAS  Google Scholar 

  192. Buskiewicz IA, Huber SA, Fairweather DL (2016) Sex hormone receptor expression in the immune system. In: Sex differences in physiology. Elsevier, pp 45–60. https://doi.org/10.1016/B978-0-12-802388-4.00004-5

    Chapter  Google Scholar 

  193. Giefing-Kröll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B (2015) How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14(3):309–321. https://doi.org/10.1111/acel.12326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638. https://doi.org/10.1038/nri.2016.90

    Article  CAS  PubMed  Google Scholar 

  195. Bupp MRG, Potluri T, Fink AL, Klein SL (2018) The confluence of sex hormones and aging on immunity. Front Immunol 9(JUN). https://doi.org/10.3389/fimmu.2018.01269

  196. Ben-Batalla I, Vargas-Delgado ME, von Amsberg G, Janning M, Loges S (2020) Influence of androgens on immunity to self and foreign: Effects on immunity and Cancer. Front Immunol 11(July):1–20. https://doi.org/10.3389/fimmu.2020.01184

    Article  CAS  Google Scholar 

  197. Hughes GC (2012) Progesterone and autoimmune disease. Autoimmun Rev. https://doi.org/10.1016/j.autrev.2011.12.003

  198. Scalerandi MV, Peinetti N, Leimgruber C et al (2018) Inefficient N2-like neutrophils are promoted by androgens during infection. Front Immunol 9(SEP). https://doi.org/10.3389/fimmu.2018.01980

  199. Roved J, Westerdahl H, Hasselquist D (2017) Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences. Horm Behav 88:95–105

    Article  CAS  PubMed  Google Scholar 

  200. Whitacre CC (2001) Sex differences in autoimmune disease. Nat Immunol. https://doi.org/10.1038/ni0901-777

  201. Fish EN (2008) The X-files in immunity: Sex-based differences predispose immune responses. Nat Rev Immunol 8:737–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tedeschi SK, Bermas B, Costenbader KH (2013) Sexual disparities in the incidence and course of SLE and RA. Clin Immunol 149(2):211–218. https://doi.org/10.1016/j.clim.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  203. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555. https://doi.org/10.1016/S1471-4906(02)02302-5

    Article  CAS  PubMed  Google Scholar 

  204. Lee S, Margolin K (2011) Cytokines in cancer immunotherapy. Cancers (Basel) 3(4):3856–3893. https://doi.org/10.3390/cancers3043856

    Article  CAS  Google Scholar 

  205. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol 12(1):1–16. https://doi.org/10.1186/s13045-019-0760-3

    Article  Google Scholar 

  206. Ciucci A, Zannoni GF, Buttarelli M et al (2016) Multiple direct and indirect mechanisms drive estrogen-induced tumor growth in high grade serous ovarian cancers. Oncotarget 7(7):8155–8171. https://doi.org/10.18632/oncotarget.6943

    Article  PubMed  PubMed Central  Google Scholar 

  207. Gwak JM, Jang MH, Kim D, Seo AN, Park SY (2015) Prognostic value of tumor-associated macrophages according to histologic locations and hormone receptor status in breast cancer. PLoS One 10(4):1–14. https://doi.org/10.1371/journal.pone.0125728

    Article  CAS  Google Scholar 

  208. Campbell MJ, Tonlaar NY, Garwood ER et al (2011) Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat 128(3):703–711. https://doi.org/10.1007/s10549-010-1154-y

    Article  PubMed  Google Scholar 

  209. Gil M, Yue W, Santen RJ et al (1998) Macrophages, estrogen and the microenvironment of breast cancer. J Steroid Biochem Mol Biol 67(5–6):403–411. https://doi.org/10.1016/S0960-0760(98)00143-5

    Article  Google Scholar 

  210. Siegfried J, Stabile LP (2014) Estrogenic steroid hormones in lung Cancer. Semin Oncol 41(1):5–16. https://doi.org/10.1053/j.seminoncol.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  211. Svensson S, Abrahamsson A, Rodriguez GV et al (2015) CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clin Cancer Res 21(16):3794–3805. https://doi.org/10.1158/1078-0432.CCR-15-0204

    Article  CAS  PubMed  Google Scholar 

  212. Ning C, Xie B, Zhang L et al (2016) Infiltrating macrophages induce ERα expression through an IL17A-mediated epigenetic mechanism to sensitize endometrial cancer cells to estrogen. Cancer Res 76(6):1354–1366. https://doi.org/10.1158/0008-5472.CAN-15-1260

    Article  CAS  PubMed  Google Scholar 

  213. Sun L, Chen B, Jiang R, Li J, Wang B (2017) Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell Immunol 311:86–93. https://doi.org/10.1016/j.cellimm.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  214. Cioni B, Zaalberg A, van Beijnum JR, et al. Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion. Nat Commun 2020;11(1):1–17. doi:https://doi.org/10.1038/s41467-020-18313-y.

  215. Cioni B, Zwart W, Bergman AM (2018) Androgen receptor moonlighting in the prostate cancer microenvironment. Endocr Relat Cancer 25(6):R331–R349. https://doi.org/10.1530/ERC-18-0042

    Article  CAS  PubMed  Google Scholar 

  216. Izumi K, Fang LY, Mizokami A et al (2013) Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol Med 5(9):1383–1401. https://doi.org/10.1002/emmm.201202367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Fang LY, Izumi K, Lai KP et al (2013) Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. Cancer Res 73(18):5633–5646. https://doi.org/10.1158/0008-5472.CAN-12-3228

    Article  CAS  PubMed  Google Scholar 

  218. Escamilla J, Schokrpur S, Liu C et al (2015) CSF1 receptor targeting in prostate Cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res 75(6):950–962. https://doi.org/10.1158/0008-5472.CAN-14-0992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Milette S, Hashimoto M, Perrino S et al (2019) Sexual dimorphism and the role of estrogen in the immune microenvironment of liver metastases. Nat Commun 10(1):1–16. https://doi.org/10.1038/s41467-019-13571-x

    Article  CAS  Google Scholar 

  220. Paharkova-Vatchkova V, Maldonado R, Kovats S (2004) Estrogen preferentially promotes the differentiation of CD11c + CD11b intermediate dendritic cells from bone marrow precursors. J Immunol 172(3):1426–1436. https://doi.org/10.4049/jimmunol.172.3.1426

    Article  CAS  PubMed  Google Scholar 

  221. Thompson MG, Peiffer DS, Larson M, Navarro F, Watkins SK (2017) FOXO3, estrogen receptor alpha, and androgen receptor impact tumor growth rate and infiltration of dendritic cell subsets differentially between male and female mice. Cancer Immunol Immunother 66(5):615–625. https://doi.org/10.1007/s00262-017-1972-4

    Article  CAS  PubMed  Google Scholar 

  222. Bupp MRG, Jorgensen TN (2018) Androgen-induced immunosuppression. Front Immunol 9(APR). https://doi.org/10.3389/fimmu.2018.00794

  223. Jiang X, Ellison SJ, Alarid ET, Shapiro DJ (2007) Interplay between the levels of estrogen and estrogen receptor controls the level of the granzyme inhibitor, proteinase inhibitor 9 and susceptibility to immune surveillance by natural killer cells. Oncogene 26(28):4106–4114. https://doi.org/10.1038/sj.onc.1210197

    Article  CAS  PubMed  Google Scholar 

  224. Rothenberger NJ, Somasundaram A, Stabile LP (2018) The role of the estrogen pathway in the tumor microenvironment. Int J Mol Sci 19(2). https://doi.org/10.3390/ijms19020611

  225. Veglia F, Gabrilovich DI (2017) Dendritic cells in cancer: The role revisited. Curr Opin Immunol 45:43–51. https://doi.org/10.1016/j.coi.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Fuertes MB, Kacha AK, Kline J et al (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J Exp Med 208(10):2005–2016. https://doi.org/10.1084/jem.20101159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Capone I, Marchetti P, Ascierto PA, Malorni W, Gabriele L (2018) Sexual dimorphism of immune responses: A new perspective in cancer immunotherapy. Front Immunol 9(MAR):1–8. https://doi.org/10.3389/fimmu.2018.00552

    Article  CAS  Google Scholar 

  228. Fridlender ZG, Sun J, Kim S et al (2010) Polarization of TAN phenotype by TGFb: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194. https://doi.org/10.1016/j.ccr.2009.06.017.Polarization

    Article  Google Scholar 

  229. Habib P, Dreymueller D, Rösing B et al (2018) Estrogen serum concentration affects blood immune cell composition and polarization in human females under controlled ovarian stimulation. J Steroid Biochem Mol Biol 178(November 2017):340–347. https://doi.org/10.1016/j.jsbmb.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  230. Chung HH, Or YZ, Shrestha S et al (2017) Estrogen reprograms the activity of neutrophils to foster protumoral microenvironment during mammary involution. Sci Rep 7(November 2016):1–13. https://doi.org/10.1038/srep46485

    Article  Google Scholar 

  231. Markman JL, Porritt RA, Wakita D et al (2020) Loss of testosterone impairs anti-tumor neutrophil function. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-15397-4

  232. Chuang KH, Altuwaijri S, Li G et al (2009) Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J Exp Med 206(5):1181–1199. https://doi.org/10.1084/jem.20082521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Lai JJ, Lai KP, Zeng W, Chuang KH, Altuwaijri S, Chang C (2012) Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: Lessons from conditional AR knockout mice. Am J Pathol 181(5):1504–1512. https://doi.org/10.1016/j.ajpath.2012.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Fridman, Wolf Herman Pagès F, Sautès-Fridman, Catherine Galon J (2012) The immune contexture in human tumours: Impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  PubMed  Google Scholar 

  235. Buskiewicz IA, Huber SA, Fairweather D (2016) Sex hormone receptor expression in the immune system. In: Sex differences in physiology, pp 45–60

    Chapter  Google Scholar 

  236. Dorak T, Mehmet Karpuzoglu E (2012) Gender differences in cancer susceptibility: An inadequately addressed issue. Front Genet

    Google Scholar 

  237. Fish EN (2008) The X-files in immunity: Sex-based differences predispose immune responses. Nat Rev Immunol 8(9):737–744. https://doi.org/10.1038/nri2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Dannenfelser R, Nome M, Tahiri A et al (2017) Data-driven analysis of immune infiltrate in a large cohort of breast cancer and its association with disease progression, ER activity, and genomic complexity. Oncotarget 8(34):57121–57133. https://doi.org/10.18632/oncotarget.19078

    Article  PubMed  PubMed Central  Google Scholar 

  239. Baker K, Lachapelle J, Zlobec I, Bismar TA, Terracciano L, Foulkes WD (2011) Prognostic significance of CD8+ T lymphocytes in breast cancer depends upon both oestrogen receptor status and histological grade. Histopathology 58(7):1107–1116. https://doi.org/10.1111/j.1365-2559.2011.03846.x

    Article  PubMed  Google Scholar 

  240. Ali HR, Provenzano E, Dawson SJ et al (2014) Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients. Ann Oncol 25(8):1536–1543. https://doi.org/10.1093/annonc/mdu191

    Article  CAS  PubMed  Google Scholar 

  241. Audun Werner Haabeth OA, Lorvik B, Hammarström KC, Donaldson C, Haraldsen IM, Guttorm Bogen B, Corthaya A (2011) Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun 15(2)

    Google Scholar 

  242. DeNardo DG, Barreto JB, Andreu P et al (2009) CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing Protumor properties of macrophages. Cancer Cell 16(2):91–102. https://doi.org/10.1016/j.ccr.2009.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Gabriele L, Buoncervello M, Ascione B (2016) Bellenghi Carè, Maria Matarrese P, Carè a. the gender perspective in cancer research and therapy: Novel insights and on-going hypotheses. Ann Ist Super Sanita 52(2):213–222

    CAS  PubMed  Google Scholar 

  244. Dakup PP, Porter KI, Little AA, Zhang H, Gaddameedhi S (2020) Sex differences in the association between tumor growth and T cell response in a melanoma mouse model. Cancer Immunol Immunother 69(10):2157–2162. https://doi.org/10.1007/s00262-020-02643-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. van Rooijen JM, Qiu SQ, Timmer-Bosscha H et al (2018) Androgen receptor expression inversely correlates with immune cell infiltration in human epidermal growth factor receptor 2–positive breast cancer. Eur J Cancer 103:52–60. https://doi.org/10.1016/j.ejca.2018.08.001

    Article  CAS  PubMed  Google Scholar 

  246. Gannon PO, Poisson AO, Delvoye N, Lapointe R, Mes-Masson AM, Saad F (2009) Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. J Immunol Methods 348(1–2):9–17. https://doi.org/10.1016/j.jim.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  247. Mercader M, Bodner BK, Moser MT et al (2001) T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci U S A 98(25):14565–14570. https://doi.org/10.1073/pnas.251140998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Vasanthakumar A, Chisanga D, Blume J et al (2020) Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579(7800):581–585. https://doi.org/10.1038/s41586-020-2251-7

  249. Ishikawa A, Wada T, Nishimura S et al (2020) Estrogen regulates sex-specific localization of regulatory T cells in adipose tissue of obese female mice. PLoS One 15(4). https://doi.org/10.1371/journal.pone.0230885

  250. Kissick HT, Sanda MG, Dunn LK et al (2014) Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Natl Acad Sci U S A 111(27):9887–9892. https://doi.org/10.1073/pnas.1402468111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Li C, Jiang P, Wei S, Xu X, Wang J (2020) Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 19(1). https://doi.org/10.1186/s12943-020-01234-1

  252. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol 30:531–564. https://doi.org/10.1146/annurev.immunol.25.022106.141623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Ohkura N, Kitagawa Y, Sakaguchi S (2013) Development and maintenance of regulatory T cells. Immunity 38(3):414–423. https://doi.org/10.1016/j.immuni.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  254. Panduro M, Benoist C, Mathis D (2016) Tissue Tregs. Annu Rev Immunol 34:609–633. https://doi.org/10.1146/annurev-immunol-032712-095948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Bellenghi M, Puglisi R, Pontecorvi G, De Feo A, Carè A, Mattia G (2020) Sex and gender disparities in melanoma. Cancers (Basel) 12(7):1–23. https://doi.org/10.3390/cancers12071819

    Article  CAS  Google Scholar 

  256. Del Mar GM, Gulfo J, Camps N et al (2017) Modulation of SHBG binding to testosterone and estradiol 4 by sex and morbid. Obesity

    Google Scholar 

  257. Generali D, Bates G, Berruti A et al (2009) Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res 15(3):1046–1051. https://doi.org/10.1158/1078-0432.CCR-08-1507

    Article  CAS  PubMed  Google Scholar 

  258. Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: A systematic review and meta-analysis. Sci Rep 5(June):1–9. https://doi.org/10.1038/srep15179

    Article  CAS  Google Scholar 

  259. Fijak M, Schneider E, Klug J et al (2011) Testosterone replacement effectively inhibits the development of experimental autoimmune Orchitis in rats: Evidence for a direct role of testosterone on regulatory T cell expansion. J Immunol 186(9):5162–5172. https://doi.org/10.4049/jimmunol.1001958

    Article  CAS  PubMed  Google Scholar 

  260. Tipton AJ, Sullivan JC (2014) Sex and gender differences in T cells in hypertension. Clin Ther 36(12):1882–1900. https://doi.org/10.1016/j.clinthera.2014.07.011.Sex

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Jia M, Dahlman-Wright K, Gustafsson JÅ (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab 29(4):557–568. https://doi.org/10.1016/j.beem.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  262. Zhou JH, Kim KB, Myers JN et al (2014) Immunohistochemical expression of hormone receptors in melanoma of pregnant women, nonpregnant women, and men. Am J Dermatopathol 36(1):74–79. https://doi.org/10.1097/DAD.0b013e3182914c64

    Article  PubMed  PubMed Central  Google Scholar 

  263. De Giorgi V, Gori A, Gandini S et al (2013) Oestrogen receptor beta and melanoma: A comparative study. Br J Dermatol 168(3):513–519. https://doi.org/10.1111/bjd.12056

    Article  CAS  PubMed  Google Scholar 

  264. Donley GM, Liu WT, Pfeiffer RM et al (2019) Reproductive factors, exogenous hormone use and incidence of melanoma among women in the United States. Br J Cancer 120(7):754–760. https://doi.org/10.1038/s41416-019-0411-z

    Article  PubMed  PubMed Central  Google Scholar 

  265. Botteri E, Støer NC, Weiderpass E, Pukkala E, Ylikorkala O, Lyytinen H (2019) Menopausal hormone therapy and risk of melanoma: A nationwide register-based study in Finland. Cancer Epidemiol Biomark Prev 28(11):1857–1860. https://doi.org/10.1158/1055-9965.EPI-19-0554

    Article  CAS  Google Scholar 

  266. Hicks BM, Kristensen KB, Pedersen SA, Hölmich LR, Pottegård A (2019) Hormone replacement therapy and the risk of melanoma in post-menopausal women. Hum Reprod 34(12):2418–2429. https://doi.org/10.1093/humrep/dez222

    Article  CAS  PubMed  Google Scholar 

  267. Ulrich BC, Guibert N (2018) Immunotherapy efficacy and gender: Discovery in precision medicine. Transl Lung Cancer Res 7:S211–S213. https://doi.org/10.21037/tlcr.2018.08.05

    Article  PubMed  PubMed Central  Google Scholar 

  268. Momtaz P, Postow MA (2014) Immunologic checkpoints in cancer therapy: Focus on the programmed death-1 (PD-1) receptor pathway. Pharmgenomics Pers Med 7:357–365. https://doi.org/10.2147/PGPM.S53163

    Article  PubMed  PubMed Central  Google Scholar 

  269. Dinesh RK, Hahn BH, Singh RP (2010) PD-1, gender, and autoimmunity. Autoimmun Rev 9(8):583–587. https://doi.org/10.1016/j.autrev.2010.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  270. Darvin P, Toor SM, Sasidharan Nair V, Elkord E (2018) Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med 50(12). https://doi.org/10.1038/s12276-018-0191-1

  271. Botticelli, A., Elisa Onesti, C., Zizzari, I., et al. (2017). The sexist behaviour of immune checkpoint inhibitors in cancer therapy? Vol 8. www.impactjournals.com/oncotarget.

  272. Riella LV, Liu T, Yang J et al (2012) Deleterious effect of CTLA4-Ig on a TREG-dependent transplant model. Am J Transplant 12(4):846–855. https://doi.org/10.1111/j.1600-6143.2011.03929.x

    Article  CAS  PubMed  Google Scholar 

  273. Özdemir BC, Dotto GP (2019) Sex hormones and anticancer immunity. Clin Cancer Res 25(15):4603–4610. https://doi.org/10.1158/1078-0432.CCR-19-0137

    Article  PubMed  Google Scholar 

  274. Conforti F, Pala L, Bagnardi V et al (2019) Sex-based differences of the tumor mutational burden and T-cell inflammation of the tumor microenvironment. Ann Oncol 30(4):653–655. https://doi.org/10.1093/annonc/mdz034

    Article  CAS  PubMed  Google Scholar 

  275. Grassadonia A, Sperduti I, Vici P et al (2018) Effect of gender on the outcome of patients receiving immune checkpoint inhibitors for advanced Cancer: A systematic review and meta-analysis of phase III randomized clinical trials. J Clin Med 7(12):542. https://doi.org/10.3390/jcm7120542

    Article  PubMed Central  Google Scholar 

  276. Wallis CJD, Butaney M, Satkunasivam R et al (2019) Association of Patient sex with efficacy of immune checkpoint inhibitors and overall survival in advanced cancers: A systematic review and meta-analysis. JAMA Oncol 5(4):529–536. https://doi.org/10.1001/jamaoncol.2018.5904

    Article  PubMed  PubMed Central  Google Scholar 

  277. Irelli A, Sirufo MM, D’Ugo C, Ginaldi L, De Martinis M (2020) Sex and gender influences on cancer immunotherapy response. Biomedicine 8(7):1–23. https://doi.org/10.3390/BIOMEDICINES8070232

    Article  Google Scholar 

  278. Duma N, Abdel-Ghani A, Yadav S et al (2019) Sex differences in tolerability to anti-programmed cell Death protein 1 therapy in patients with metastatic melanoma and non-small cell lung Cancer: Are we all equal? Oncologist 24(11). https://doi.org/10.1634/theoncologist.2019-0094

  279. Wizemann TM, Pardue M-L Exploring the biological contributions to human health. National Academies Press, Washington, DC, 2001. https://doi.org/10.17226/10028

  280. Taylor KE, Vallejo-Giraldo C, Schaible NS, Zakeri R, Miller VM. Reporting of sex as a variable in cardiovascular studies using cultured cells. Biol Sex Differ 2011;1(11):1–7.

    Google Scholar 

  281. Beery AK, Zucker I (2011) Sex Bias in neuroscience and biomedical research. Neurosci Biobehav Rev 35(3):565–572

    Article  PubMed  Google Scholar 

  282. Lee S, Kwak H, Kang M, Park Y, Jeong G (2008) Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Sci Rep 8(2365):1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christel Pequeux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wuidar, V., Gillot, L., Dias Da Silva, I., Lebeau, A., Gallez, A., Pequeux, C. (2021). Sex-Based Differences in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1329. Springer, Cham. https://doi.org/10.1007/978-3-030-73119-9_23

Download citation

Publish with us

Policies and ethics