Skip to main content

Optimization-Based Parametric Model Order Reduction for the Application to the Frequency-Domain Analysis of Complex Systems

  • Chapter
  • First Online:
Model Reduction of Complex Dynamical Systems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 171))

  • 1322 Accesses

Abstract

A parametric model order reduction approach for the frequency-domain analysis of complex industry models is presented. Linear time-invariant subsystem models are reduced for the use in domain integration approaches in the context of structural dynamics. These subsystems have a moderate number of resonances in the considered frequency band but a high-dimensional input parameter space and a large number of states. A global basis approach is chosen for model order reduction, in combination with an optimization-based greedy search strategy for the model training. Krylov subspace methods are employed for local basis generation, and a goal-oriented error estimate based on residual expressions is developed as the optimization objective. As the optimization provides solely local maxima of the non-convex error in parameter space, an in-situ and a-posteriori error evaluation strategy is combined. On the latter, a statistical error evaluation is performed based on Bayesian inference. The method finally enables parametric model order reduction for industry finite element models with complex modeling techniques and many degrees of freedom. After discussing the method on a beam example, this is demonstrated on an automotive example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.: Large-scale computation of L\({}_\infty \)-norms by a greedy subspace method. SIAM J. Matrix Anal. Appl. 38(4), 496–1516 (2017). https://doi.org/10.1137/16M1086200

  2. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008). https://doi.org/10.2514/1.35374

    Article  Google Scholar 

  3. Amsallem, D., Farhat, C.: An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33(5), 2169–2198 (2011). https://doi.org/10.1137/100813051

    Article  MathSciNet  MATH  Google Scholar 

  4. Antil, H., Heinkenschloss, M., Sorensen, D.C.: Application of the Discrete Empirical Interpolation Method to Reduced Order Modeling of Nonlinear and Parametric Systems. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction, pp. 101–136. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-02090-7_4

  5. Baur, U., Beattie, C., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33(5), 2489–2518 (2011). https://doi.org/10.1137/090776925

    Article  MathSciNet  MATH  Google Scholar 

  6. Baur, U., Benner, P.: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation - Model Reduction for Parametric Systems Using Balanced Truncation and Interpolation. Autom. 57(8) (2009). https://doi.org/10.1524/auto.2009.0787

  7. Baur, U., Benner, P., Greiner, A., Korvink, J., Lienemann, J., Moosmann, C.: Parameter preserving model order reduction for MEMS applications. Math. Comput. Model. Dyn. Syst. 17(4), 297–317 (2011). https://doi.org/10.1080/13873954.2011.547658

    Article  MathSciNet  MATH  Google Scholar 

  8. Benner, P., Feng, L.: A robust algorithm for parametric model order reduction based on implicit moment matching. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction, pp. 159–185. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-02090-7_6

  9. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015). https://doi.org/10.1137/130932715

    Article  MathSciNet  MATH  Google Scholar 

  10. Borggaard, J., Pond, K.R., Zietsman, L.: Parametric reduced order models using adaptive sampling and interpolation. IFAC Proc. Vol. 47(3), 7773–7778 (2014). https://doi.org/10.3182/20140824-6-ZA-1003.02664

    Article  Google Scholar 

  11. Bui-Thanh, T.: Model-Constrained Optimization Methods for Reduction of Parameterized Large-Scale Systems. Ph.D. Thesis, Massachusetts Institute of Technology (2007)

    Google Scholar 

  12. Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008). https://doi.org/10.1137/070694855

    Article  MathSciNet  MATH  Google Scholar 

  13. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004). https://doi.org/10.1017/S0962492904000182

    Article  MathSciNet  MATH  Google Scholar 

  14. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010). https://doi.org/10.1137/090766498

    Article  MathSciNet  MATH  Google Scholar 

  15. Chellappa, S., Feng, L., Benner, P.: An Adaptive Sampling Approach for the Reduced Basis Method. ArXiv191000298 Cs Math (2019)

    Google Scholar 

  16. Chen, P., Quarteroni, A.: A new algorithm for high-dimensional uncertainty quantification based on dimension-adaptive sparse grid approximation and reduced basis methods. J. Comp. Phys. 298, 176–193 (2015). https://doi.org/10.1016/j.jcp.2015.06.006

    Article  MathSciNet  MATH  Google Scholar 

  17. Daniel, L., Siong, O., Chay, L., Lee, K., White, J.: A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 23(5), 678–693 (2004). https://doi.org/10.1109/TCAD.2004.826583

  18. Degroote, J., Vierendeels, J., Willcox, K.: Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis. Int. J. Numer. Meth. Fluids 63(2), 207–23 (2009). https://doi.org/10.1002/fld.2089

  19. Feng, L., Antoulas, A.C., Benner, P.: Some a posteriori error bounds for reduced-order modelling of (non-)parametrized linear systems. ESAIM Math. Model. Numer. Anal. 51(6), 2127–2158 (2017). https://doi.org/10.1051/m2an/2017014

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, L., Benner, P.: A new error estimator for reduced-order modeling of linear parametric systems. IEEE Trans. Microwave Theory Techn. 67(12), 4848–4859 (2019). https://doi.org/10.1109/TMTT.2019.2948858

    Article  Google Scholar 

  21. Fröhlich, B., Gade, J., Geiger, F., Bischoff, M., Eberhard, P.: Geometric element parameterization and parametric model order reduction in finite element based shape optimization. Comput. Mech. 63(5), 853–868 (2019). https://doi.org/10.1007/s00466-018-1626-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Geuss, M., Butnaru, D., Peherstorfer, B., Bungartz, H.J., Lohmann, B.: Parametric model order reduction by sparse-grid-based interpolation on matrix manifolds for multidimensional parameter spaces. In: 2014 European Control Conference (ECC), pp. 2727–2732. IEEE, Strasbourg, France (2014). https://doi.org/10.1109/ECC.2014.6862414

  23. Gosselet, P., Rey, C.: Non-overlapping domain decomposition methods in structural mechanics. Arch. Comput. Methods Eng. 13(4), 515–572 (2006). https://doi.org/10.1007/BF02905857

    Article  MathSciNet  MATH  Google Scholar 

  24. Gugercin, S.: Projection methods for model reduction of large-scale dynamical systems. Ph.D. Thesis, Rice University (2003)

    Google Scholar 

  25. Gugercin, S., Antoulas, A.C., Beattie, C.: Rational Krylov Methods for Optimal \(\cal H\it _2\) Model Reduction (2006)

    Google Scholar 

  26. Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comp. Model. Dyn. Sys. 17(4), 423–442 (2011). https://doi.org/10.1080/13873954.2011.547674

    Article  MathSciNet  MATH  Google Scholar 

  27. Hesthaven, J.S., Stamm, B., Zhang, S.: Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods. ESAIM Math. Model. Numer. Anal. 48(1), 259–283 (2014). https://doi.org/10.1051/m2an/2013100

    Article  MathSciNet  MATH  Google Scholar 

  28. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. No. 3 in Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  29. Hund, M., Mlinarić, P., Saak, J.: An \(\mathscr {H}\)\(_{2}\)\(\otimes \)\(\mathscr {L}\)\(_{2}\) -Optimal Model Order Reduction Approach for Parametric Linear Time-Invariant Systems. Proc. Appl. Math. Mech. 18(1) (2018). https://doi.org/10.1002/pamm.201800084

  30. Iapichino, L., Volkwein, S.: Optimization strategy for parameter sampling in the reduced basis method. IFAC-PapersOnLine 48(1), 707–712 (2015). https://doi.org/10.1016/j.ifacol.2015.05.020

    Article  Google Scholar 

  31. Lehar, M., Zimmermann, M.: An inexpensive estimate of failure probability for high-dimensional systems with uncertainty. Struct. Saf. 36–37, 32–38 (2012). https://doi.org/10.1016/j.strusafe.2011.10.001

    Article  Google Scholar 

  32. Maday, Y., Stamm, B.: Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces. ArXiv12043846 Math (2012)

    Google Scholar 

  33. Martins, J.R.R.A., Hwang, J.T.: Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J. 51(11), 2582–2599 (2013). https://doi.org/10.2514/1.J052184

    Article  Google Scholar 

  34. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239 (1979). https://doi.org/10.2307/1268522

    Article  MathSciNet  MATH  Google Scholar 

  35. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research. Springer, New York (2006)

    Google Scholar 

  36. Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric Model Order Reduction by Matrix Interpolation. - Autom. 58(8) (2010). https://doi.org/10.1524/auto.2010.0863

  37. Papadimitriou, D.I., Giannakoglou, K.C.: Direct, adjoint and mixed approaches for the computation of Hessian in airfoil design problems. Int. J. Numer. Meth. Fluids 56(10), 1929–1943 (2008). https://doi.org/10.1002/fld.1584

    Article  MATH  Google Scholar 

  38. Paul-Dubois-Taine, A., Amsallem, D.: An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. Int. J. Numer. Methods Eng. 102(5), 1262–1292 (2015). https://doi.org/10.1002/nme.4759

    Article  MathSciNet  MATH  Google Scholar 

  39. Peherstorfer, B., Zimmer, S., Bungartz, H.J.: Model reduction with the reduced basis method and sparse grids. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and Applications, vol. 88, pp. 223–242. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31703-3_11

  40. Salimbahrami, B., Lohmann, B., Bechtold, T., Korvink, J.: A two-sided Arnoldi algorithm with stopping criterion and MIMO selection procedure. Math. Comput. Model. Dyn. Syst. 11(1), 79–93 (2005). https://doi.org/10.1080/13873950500052595

    Article  MathSciNet  MATH  Google Scholar 

  41. Sen, S.: Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems. Numer. Heat Transf. Part B: Fundam. 54(5), 369–389 (2008). https://doi.org/10.1080/10407790802424204

    Article  Google Scholar 

  42. Sicklinger, S., Belsky, V., Engelmann, B., Elmqvist, H., Olsson, H., Wüchner, R., Bletzinger, K.U.: Interface Jacobian-based co-simulation. Int. J. Numer. Methods Eng. 98(6), 418–444 (2014). https://doi.org/10.1002/nme.4637

    Article  MathSciNet  MATH  Google Scholar 

  43. Sirovich, L.: Turbolence and the dynamics of coherent structures part I: coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    Article  Google Scholar 

  44. Son, N.T.: A real time procedure for affinely dependent parametric model order reduction using interpolation on Grassmann manifolds. Int. J. Numer. Meth. Eng. 818–833 (2012). https://doi.org/10.1002/nme.4408

  45. Ullmann, R.: A 3D solid beam benchmark for model order reduction. Mendeley Data V1 (2020). https://doi.org/10.17632/cprx2kx2ws.1

  46. Urban, K., Volkwein, S., Zeeb, O.: Greedy sampling using nonlinear optimization. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction, pp. 137–157. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-02090-7_5

  47. Yue, Y., Feng, L., Benner, P.: An Adaptive Pole-Matching Method for Interpolating Reduced-Order Models. ArXiv190800820 Cs Math (2019)

    Google Scholar 

  48. Yue, Y., Feng, L., Benner, P.: Reduced-order modelling of parametric systems via interpolation of heterogeneous surrogates. Adv. Model. Simul. Eng. Sci. 6(1), 10 (2019). https://doi.org/10.1186/s40323-019-0134-y

  49. Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations, pp. 241–251. Vieweg (1991)

    Google Scholar 

  50. Zimmermann, M., von Hoessle, J.E.: Computing solution spaces for robust design. Int. J. Numer. Methods Eng. 94(3), 290–307 (2013). https://doi.org/10.1002/nme.4450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Ullmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ullmann, R., Sicklinger, S., Müller, G. (2021). Optimization-Based Parametric Model Order Reduction for the Application to the Frequency-Domain Analysis of Complex Systems. In: Benner, P., Breiten, T., Faßbender, H., Hinze, M., Stykel, T., Zimmermann, R. (eds) Model Reduction of Complex Dynamical Systems. International Series of Numerical Mathematics, vol 171. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-72983-7_8

Download citation

Publish with us

Policies and ethics