Skip to main content
Log in

Geometric element parameterization and parametric model order reduction in finite element based shape optimization

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This contribution proposes a new approach to derive geometrically parameterized, reduced order finite element models. An element formulation for geometrically parameterized finite elements is suggested. The parameterized elements are used to derive models with a parameterized geometry where the parameterized system matrices are expressed in an affine representation. Parametric model order reduction can then be efficiently used to reduce the full order parameterized model to a reduced order parameterized model. The approach shows two beneficial features. First, design studies and shape optimizations can be conducted with parameterized reduced order model of much lower dimension compared to the parameterized, full order model. Second, it is possible to compute sensitivities analytically, and therefore, to avoid the computation of finite differences gradients. The approach is illustrated with two numerical examples. The first example includes a detailed error analysis. The second example is a shape optimization example of an adaptive structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aliyev N, Benner P, Mengi E, Schwerdtner P, Voigt M (2017) Large-scale computation of \(L_\infty \)-norms by a Greedy subspace method. SIAM J Matrix Anal Appl 38(4):1496–1516

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammar A, Huerta A, Chinesta F, Cueto E, Leygue A (2014) Parametric solutions involving geometry: a step towards efficient shape optimization. Comput Methods Appl Mech Eng 268:178–193

    Article  MathSciNet  MATH  Google Scholar 

  3. Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7):1803–1813

    Article  Google Scholar 

  4. Antoulas A (2005) Approximation of large-scale dynamical systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  5. Baumann M (2016) Parametrische Modellreduktion in elastischen Mehrkörpersystemen. Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol 43. Shaker, Aachen (in German)

  6. Baur U, Beattie C, Benner P, Gugercin S (2011) Interpolatory projection methods for parameterized model reduction. SIAM J Sci Comput 33(5):2489–2518

    Article  MathSciNet  MATH  Google Scholar 

  7. Baur U, Benner P (2009) Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation. at-Automatisierungstechnik 57(8):411–419

    Article  Google Scholar 

  8. Baur U, Benner P, Haasdonk B, Himpe C, Martini I, Ohlberger M (2017) Comparison of methods for parametric model order reduction of time-dependent problems. In: Benner P, Cohen A, Ohlberger M, Willcox K (eds) Model reduction and approximation theory and algorithms. SIAM, Philadelphia

  9. Benner P, Gugercin S, Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev 57(4):483–531

    Article  MathSciNet  MATH  Google Scholar 

  10. Bletzinger KU (2014) A consistent frame for sensitivity filtering and the vertex assigned morphing of optimal shape. Struct Multidiscip Optim 49(6):873–895

    Article  MathSciNet  Google Scholar 

  11. Daniel L, Siong O, Chay L, Lee K, White J (2004) A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Trans Comput Aided Des Integr Circuits Syst 23(5):678–693

    Article  Google Scholar 

  12. Fehr J (2011) Automated and error-controlled model reduction in elastic multibody systems. Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol 21. Shaker, Aachen

  13. Fehr J, Grunert D, Holzwarth P, Fröhlich B, Walker N, Eberhard P (2017) Morembs—a model order reduction package for elastic multibody systems and beyond. In: Keiper W, Milde A, Volkwein S (eds) Reduced-order modeling (ROM) for simulation and optimization. Powerful algorithms as key enablers for scientific computing. https://www.springer.com/de/book/9783319753188

  14. Feng L, Rudnyi E, Korvink J (2005) Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation. IEEE Trans Comput Aided Des Integr Circuits Syst 24(12):1838–1847

    Article  Google Scholar 

  15. Fischer M, Eberhard P (2014) Application of parametric model reduction with matrix interpolation for simulation of moving loads in elastic multibody systems. Adv Comput Math 41(5):1049–1072

    Article  MathSciNet  MATH  Google Scholar 

  16. Grimme E (1997) Krylov projection methods for model reduction. Dissertation, University of Illinois at Urbana-Champaign

  17. Huerta A, Nadal E, Chinesta F (2017) Proper generalized decomposition solutions within a domain decomposition strategy. Int J Numer Methods Eng 113(13):1972–1994

    Article  MathSciNet  Google Scholar 

  18. Lang N, Saak J, Benner P (2014) Model order reduction for systems with moving loads. at-Automatisierungstechnik 62(7):512–522

    Article  Google Scholar 

  19. Lehner M (2007) Modellreduktion in elastischen Mehrkörpersystemen. Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol 10. Shaker, Aachen (in German)

  20. Nocedal J, Wright SJ (2006) Numerical optimization. Springer series in operations research. Springer, Berlin

    Google Scholar 

  21. Panzer H, Mohring J, Eid R, Lohmann B (2010) Parametric model order reduction by matrix interpolation. at-Automatisierungstechnik 58(8):475–484

    Article  Google Scholar 

  22. Salimbahrami SB (2005) Structure preserving order reduction of large scale second order models. Dissertation, Technische Universität München

  23. Stavropoulou E, Hojjat M, Bletzinger KU (2014) In-plane mesh regularization for node-based shape optimization problems. Comput Methods Appl Mech Eng 275:39–54

    Article  MathSciNet  MATH  Google Scholar 

  24. Teuffel P (2004) Entwerfen Adaptiver Strukturen. Dissertation, Universität Stuttgart (in German)

  25. Walker N, Fröhlich B, Eberhard P (2018) Model order reduction for parameter dependent substructured systems using krylov subspaces. In: Proceedings of the 9th Vienna conference on mathematical modelling (MATHMOD), Vienna, Austria

  26. Yoo EJ (2010) Parametric model order reduction for structural analysis and control. Dissertation, Technische Universität München

  27. Zienkiewicz OC (1971) The finite element method. McGraw-Hill, London

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the German Research Foundation (DFG) for the support of this research work within the collaborative research centre SFB/CRC 1244, “Adaptive Skins and Structures for the Built Environment of Tomorrow” with the projects A04 and B01 and as well as the project DFG EB 195/11-2 “Model Order Reduction for Elastic Multibody Systems with Moving Interactions”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Eberhard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröhlich, B., Gade, J., Geiger, F. et al. Geometric element parameterization and parametric model order reduction in finite element based shape optimization. Comput Mech 63, 853–868 (2019). https://doi.org/10.1007/s00466-018-1626-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1626-1

Keywords

Navigation