Skip to main content

Plant Litter Decomposition as a Tool for Stream Ecosystem Assessment

  • Chapter
  • First Online:
The Ecology of Plant Litter Decomposition in Stream Ecosystems

Abstract

The decomposition of plant litter in freshwaters is an integrative process involving multiple organism groups and connecting terrestrial and freshwater ecosystems. The quantification of leaf litter decomposition has been advocated as an effective indicator of ecosystem functional integrity in the bioassessment of freshwaters. Indeed, variation in litter decomposition rates has been used to detect the impacts of a wide range of anthropogenic disturbances on the functioning of detritus-based food webs in freshwater ecosystems, particularly in streams. However, these assessments have almost exclusively been undertaken as part of research projects, and the application of litter decomposition as a tool in routine biomonitoring remains limited. We evaluate the potential for litter decomposition as a tool for ecosystem assessment by environmental agencies and managers, drawing on insights and experiences from three lines of evidence: (i) a broad selection of published research projects, (ii) an existing national-scale monitoring program and (iii) a meta-analysis comparing litter decomposition rates between nutrient-enriched and reference sites. We use this as a basis for discussing inter alia common substrates used in decomposition assays, alternatives for field protocols and sampling designs, and the use of different indices and reference conditions when arriving at an assessment of functional status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelho, M., & Canhoto, C. (2020). The role of carbon, nitrogen, and phosphorus in leaf decomposition mediated by aquatic fungi. Limnetica, 39, 275–282

    Article  Google Scholar 

  • Abril, M., Muñoz, I., Casas-Ruiz, J. P., Gómez-Gener, L., Barceló, M., Oliva, F., & Menéndez, M. (2015). Effects of water flow regulation on ecosystem functioning in a Mediterranean river network assessed by wood decomposition. Science of the Total Environment, 517, 57–65

    Article  CAS  Google Scholar 

  • Alp, M., Cucherousset, J., Buoro, M., & Lecerf, A. (2016). Phenological response of a key ecosystem function to biological invasion. Ecology Letters, 19, 519–527

    Article  PubMed  Google Scholar 

  • Armitage, P., Moss, D., & Wright, J. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research, 17, 333–347

    Article  CAS  Google Scholar 

  • Arroita, M., Aristi, I., Flores, L., Larrañaga, A., Díez, J., Mora, J., Romaní, A. M., & Elosegi, A. (2012). The use of wooden sticks to assess stream ecosystem functioning: Comparison with leaf breakdown rates. Science of the Total Environment, 440, 115–122

    Article  CAS  Google Scholar 

  • Baldy, V., Gessner, M. O., & Chauvet, E. (1995). Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos, 74, 93–102

    Article  Google Scholar 

  • Baldy, V., Gobert, V., Guerold, F., Chauvet, E., Lambrigot, D., & Charcosset, J. Y. (2007). Leaf litter breakdown budgets in streams of various trophic status: Effects of dissolved inorganic nutrients on microorganisms and invertebrates. Freshwater Biology, 52, 1322–1335

    Article  CAS  Google Scholar 

  • Benavides-Gordillo, S., Farjalla, V. F., González, A. L., & Romero, G. Q. (2019). Changes in rainfall level and litter stoichiometry affect aquatic community and ecosystem processes in bromeliad phytotelmata. Freshwater Biology, 64, 1357–1368

    Article  CAS  Google Scholar 

  • Boulton, A. J. (1999). An overview of river health assessment: Philosophies, practice, problems and prognosis. Freshwater Biology, 41, 469–479

    Article  Google Scholar 

  • Boulton, A. J., & Quinn, J. M. (2000). A simple and versatile technique for assessing cellulose decomposition potential in floodplain and riverine sediments. Archiv für Hydrobiologie, 150(1), 133–151.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Dudgeon, D., Graça, M. A. S., Gessner, M. O., Albariño, R. J., Ferreira, V., Yule, C. M., Boulton, A. J., Arunachalam, M., Callisto, M., Chauvet, E., Ramirez, A., Chara, J., Moretti, M. S., Gonçalves, J. F., Jr., Helson, J. E., Chará-Serna, A. M., Encalada, A. C., … Pringle, C. M. (2011). Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology, 92, 1839–1848

    Article  PubMed  Google Scholar 

  • Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., Davies, J. N., Figueroa, R., Flecker, A. S., Ramirez, A., … West, D. C. (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14, 289–294

    Article  PubMed  Google Scholar 

  • Bruder, A., Frainer, A., Rota, T., & Primicerio, R. (2019). The Importance of ecological networks in multiple-stressor research and management. Frontiers in Environmental Science, 7, 59

    Article  Google Scholar 

  • Bruder, A., Salis, R. K., McHugh, N. J., & Matthaei, C. D. (2016). Multiple-stressor effects on leaf litter decomposition and fungal decomposers in agricultural streams contrast between litter species. Functional Ecology, 30(7), 1257–1266.

    Google Scholar 

  • Bruder, A., Schindler, M. H., Moretti, M. S., & Gessner, M. O. (2014). Litter decomposition in a temperate and a tropical stream: The effects of species mixing, litter quality and shredders. Freshwater Biology, 59, 438–449

    Article  CAS  Google Scholar 

  • Bundschuh, M., & McKie, B. G. (2016). An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Freshwater Biology, 61, 2063–2074

    Article  CAS  Google Scholar 

  • Burdon, F. J., Ramberg, E., Sargac, J., Forio, M. A. E., de Saeyer, N., Mutinova, P. T., Moe, T. F., Pavelescu, M. O., Dinu, V., Cazacu, C., Witing, F., Kupilas, B., Grandin, U., Volk, M., Rîşnoveanu, G., Goethals, P., Friberg, N., Johnson, R. K., & McKie, B. G. (2020). Assessing the benefits of forested riparian zones: A qualitative index of riparian integrity is positively associated with ecological status in European streams. Water, 12, 1178

    Article  Google Scholar 

  • Carvalho, C., Hepp, L. U., Palma-Silva, C., & Albertoni, E. F. (2015). Decomposition of macrophytes in a shallow subtropical lake. Limnologica, 53, 1–9

    Article  CAS  Google Scholar 

  • Castela, J., Ferreira, V., & Graça, M. A. S. (2008). Evaluation of stream ecological integrity using litter decomposition and benthic invertebrates. Environmental Pollution, 153, 440–449

    Article  CAS  PubMed  Google Scholar 

  • Chadwick, M., & Huryn, A. (2003). Effect of a whole-catchment N addition on stream detritus processing. Journal of the North American Benthological Society, 22, 194–206

    Article  Google Scholar 

  • Chauvet, E., Ferreira, V., Giller, P. S., McKie, B. G., Tiegs, S. D., Woodward, G., Elosegi, A., Dobson, M., Fleituch, T., Graça, M. A. S., Gulis, V., Hladyz, S., Lacoursière, J. O., Lecerf, A., Pozo, J., Preda, E., Riipinen, M., Rîşnoveanu, G., Vadineanu, A., … Gessner, M. O. (2016). Litter decomposition as an indicator of stream ecosystem functioning at local-to-continental scales: Insights from the European RivFunction project. In A. J. Dumbrell, R. L. Kordas, & G. Woodward (Eds.), Advances in Ecological Research (Chap. 3, pp. 99–182). Academic Press.

    Google Scholar 

  • Clapcott, J. E., Collier, K. J., Death, R. G., Goodwin, E. O., Harding, J. S., Kelly, D., Leathwick, J. R., & Young, R. G. (2012). Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshwater Biology, 57, 74–90

    Article  Google Scholar 

  • Colas, F., Baudoin, J.-M., Chauvet, E., Clivot, H., Danger, M., Guérold, F., & Devin, S. (2016). Dam-associated multiple-stressor impacts on fungal biomass and richness reveal the initial signs of ecosystem functioning impairment. Ecological Indicators, 60, 1077–1090

    Article  Google Scholar 

  • Colas, F., Baudoin, J.-M., Danger, M., Usseglio-Polatera, P., Wagner, P., & Devin, S. (2013). Synergistic impacts of sediment contamination and dam presence on river functioning. Freshwater Biology, 58, 320–336

    Article  Google Scholar 

  • Colas, F., Baudoin, J.-M., Gob, F., Tamisier, V., Valette, L., Kreutzenberger, K., Lambrigot, D., & Chauvet, E. (2017). Scale dependency in the hydromorphological control of a stream ecosystem functioning. Water Research, 115, 60–73

    Article  CAS  PubMed  Google Scholar 

  • Colas, F., Woodward, G., Burdon, F. J., Guérold, F., Chauvet, E., Cornut, J., Cébron, A., Clivot, H., Danger, M., Danner, M. C., Pagnout, C., & Tiegs, S. D. (2019). Towards a simple global-standard bioassay for a key ecosystem process: Organic-matter decomposition using cotton strips. Ecological Indicators, 106, 105466

    Article  CAS  Google Scholar 

  • Collier, K., Clapcott, J., & Neale, M. (2014). A macroinvertebrate attribute to assess ecosystem health for New Zealand waterways for the national objectives framework—Issues and options. University of Waikato.

    Google Scholar 

  • Connolly, N. M., & Pearson, R. G. (2013). Nutrient enrichment of a heterotrophic stream alters leaf litter nutritional quality and shredder physiological condition via the microbial pathway. Hydrobiologia, 718, 85–92

    Article  Google Scholar 

  • Dahl, J., & Johnson, R. K. (2004). A multimetric macroinvertebrate index for detecting organic pollution of streams in southern Sweden. Archiv Für Hydrobiologie, 160, 487–513

    Article  CAS  Google Scholar 

  • Downs, P., Ms, S., Bk, O., Ze, D., Tc, C., & Jc, S. (2011). Restoring ecological integrity in highly regulated rivers: The role of baseline data and analytical references. Environmental Management, 48, 847–864

    Article  PubMed  Google Scholar 

  • Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 455–463

    Article  CAS  PubMed  Google Scholar 

  • Elias, C. L., Calapez, A. R., Almeida, S. F. P., Chessman, B., Simões, N., & Feio, M. J. (2016). Predicting reference conditions for river bioassessment by incorporating boosted trees in the environmental filters method. Ecological Indicators, 69, 239–251

    Article  Google Scholar 

  • Elosegi, A., Gessner, M. O., & Young, R. G. (2017). River doctors: Learning from medicine to improve ecosystem management. Science of the Total Environment, 595, 294–302

    Article  CAS  Google Scholar 

  • Enriquez, S., Duarte, C., & Sand-Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N: P content. Oecologia, 94, 457–471

    Article  CAS  PubMed  Google Scholar 

  • Entrekin, S. A., Tank, J. L., Rosi-Marshall, E. J., Hoellein, T. J., & Lamberti, G. A. (2008). Responses in organic matter accumulation and processing to an experimental wood addition in three headwater streams. Freshwater Biology, 53, 1642–1657

    Article  CAS  Google Scholar 

  • Feio, M. J., Aguiar, F. C., Almeida, S. F. P., Ferreira, J., Ferreira, M. T., Elias, C., Serra, S. R. Q., Buffagni, A., Cambra, J., Chauvin, C., Delmas, F., Dörflinger, G., Erba, S., Flor, N., Ferréol, M., Germ, M., Mancini, L., Manolaki, P., Marcheggiani, S., … Vieira, C. (2014). Least disturbed condition for European Mediterranean rivers. Science of the Total Environment, 476–477, 745–756

    Article  Google Scholar 

  • Feio, M. J., Alves, T., Boavida, M., Medeiros, A., & Graça, M. A. S. (2010). Functional indicators of stream health: A river-basin approach. Freshwater Biology, 55, 1050–1065

    Article  Google Scholar 

  • Feld, C. K., Birk, S., Bradley, D. C., Hering, D., Kail, J., Marzin, A., Melcher, A., Nemitz, D., Pedersen, M. L., Pletterbauer, F., Pont, D., Verdonschot, P. F. M., & Friberg, N. (2011). From natural to degraded rivers and back again: A test of restoration ecology theory and practice. In G. Woodward (ed.), Advances in Ecological Research (Chap. 3, pp. 119–209). Academic Press.

    Google Scholar 

  • Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves, J. F., Goyenola, G., Graça, M. A. S., Hepp, L. U., Kariuki, S., López-Rodríguez, A., Mazzeo, N., M’Erimba, C., Monroy, S., Peil, A., Pozo, J., Rezende, R., & Teixeira-de-Mello, F. (2019). A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems, 22, 629–642

    Article  Google Scholar 

  • Ferreira, V., Castagneyrol, B., Koricheva, J., Gulis, V., Chauvet, E., & Graça, M. A. S. (2015). A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews, 90, 669–688

    Article  PubMed  Google Scholar 

  • Ferreira, V., Encalada, A. C., & Graça, M. A. S. (2012). Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science, 31, 945–962

    Article  Google Scholar 

  • Ferreira, V., & Guérold, F. (2017). Leaf litter decomposition as a bioassessment tool of acidification effects in streams: Evidence from a field study and meta-analysis. Ecological Indicators, 79, 382–390

    Article  CAS  Google Scholar 

  • Ferreira, V., Gulis, V., & Graça, M. A. S. (2006). Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia, 149, 718–729

    Article  PubMed  Google Scholar 

  • Ferreira, V., Koricheva, J., Duarte, S., Niyogi, D. K., & Guérold, F. (2016). Effects of anthropogenic heavy metal contamination on litter decomposition in streams—A meta-analysis. Environmental Pollution, 210, 261–270

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, V., Koricheva, J., Pozo, J., & Graça, M. A. S. (2016). A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. Forest Ecology and Management, 364, 27–38

    Article  Google Scholar 

  • Ferreira, V., Raposeiro, P. M., Pereira, A., Cruz, A. M., Costa, A. C., Graça, M. A. S., & Gonçalves, V. (2016). Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology, 61, 783–799

    Article  CAS  Google Scholar 

  • Flores, L., Larrañaga, A., Díez, J., & Elosegi, A. (2011). Experimental wood addition in streams: Effects on organic matter storage and breakdown. Freshwater Biology, 56, 2156–2167

    Article  Google Scholar 

  • Flury, S., & Gessner, M. O. (2011). Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh. Applied and Environmental Microbiology, 77, 803–809

    Article  CAS  PubMed  Google Scholar 

  • Frainer, A., Jabiol, J., Gessner, M. O., Bruder, A., Chauvet, E., & McKie, B. G. (2016). Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos, 125, 861–871

    Article  CAS  Google Scholar 

  • Frainer, A., & McKie, B. G. (2015). Shifts in the diversity and composition of consumer traits constrain the effects of land use on stream ecosystem functioning. Advances in Ecological Research, 52, 169–200

    Article  Google Scholar 

  • Frainer, A., McKie, B. G., & Malmqvist, B. (2014). When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. Journal of Animal Ecology, 83, 460–469

    Article  Google Scholar 

  • Frainer, A., Moretti, M. S., Xu, W., & Gessner, M. O. (2015). No evidence for leaf trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology, 96, 550–561

    Article  PubMed  Google Scholar 

  • Frainer, A., Polvi, L. E., Jansson, R., & McKie, B. G. (2018). Enhanced ecosystem functioning following stream restoration: The roles of habitat heterogeneity and invertebrate species traits. Journal of Applied Ecology, 55, 377–385

    Article  Google Scholar 

  • Galas, J., Bednarz, T., Dummicka, E., Starzecka, A., & Wojtan, K. (1996). Litter decomposition in a mountain cave water. Archiv Für Hydrobiologie, 138, 199–211

    Article  CAS  Google Scholar 

  • Gardeström, J., Ermold, M., Goedkoop, W., & McKie B. G. (2016). Disturbance history influences stressor impacts: effects of a fungicide and nutrients on microbial diversity and litter decomposition. Freshwater Biology, 61, 2171–2184

    Google Scholar 

  • Gessner, M. O., & Chauvet, E. (1994). Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology, 75, 1807–1817

    Article  Google Scholar 

  • Gessner, M. O., & Chauvet, E. (2002). A case for using litter breakdown to assess functional stream integrity. Ecological Applications, 12, 498–510

    Article  Google Scholar 

  • Gjerløv, C., & Richardson, J. S. (2004). Patchy resources in a heterogeneous environment: Effects of leaf litter and forest cover on colonisation patterns of invertebrates in a British Columbian stream. Archiv Für Hydrobiologie, 161, 307–327

    Article  Google Scholar 

  • Graça, M. A. S., & Poquet, J. M. (2014). Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia, 174, 1021–1032

    Article  PubMed  Google Scholar 

  • Grossman, J. J., Cavender‐Bares, J., & Hobbie, S. E. (2020). Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecological Monographs, 90, e01407.

    Google Scholar 

  • Gulis, V., Ferreira, V., & Graça, M. A. S. (2006). Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: Implications for stream assessment. Freshwater Biology, 51, 1655–1669

    Article  CAS  Google Scholar 

  • Gulis, V., & Suberkropp, K. (2003). Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology, 48, 123–134

    Article  Google Scholar 

  • Halvorson, H. M., Fuller, C. L., Entrekin, S. A., Scott, J. T., & Evans-White, M. A. (2018). Detrital nutrient content and leaf species differentially affect growth and nutritional regulation of detritivores. Oikos, 127, 1471–1481

    Article  CAS  Google Scholar 

  • Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., Chauvet, E., Gessner, M. O., Jabiol, J., Makkonen, M., McKie, B. G., Malmqvist, B., Peeters, E. T. H. M., Scheu, S., Schmid, B., van Ruijven, J., Vos, V. C. A., & Hättenschwiler, S. (2014). Consequences of Biodiversity Loss for Litter Decomposition Across Biomes. Nature, 509, 218–221

    Article  CAS  PubMed  Google Scholar 

  • Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150–1156

    Article  Google Scholar 

  • Hernández, A. D., & Sukhdeo, M. V. K. (2008). Parasite effects on isopod feeding rates can alter the host’s functional role in a natural stream ecosystem. International Journal for Parasitology, 38, 683–690

    Article  PubMed  Google Scholar 

  • Hieber, M., & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83, 1026–1038

    Article  Google Scholar 

  • Hildrew, A. G., Townsend, C. R., Francis, J., & Finch, K. (1984). Cellulolytic decomposition in streams of contrasting pH and its relationship with invertebrate community structure. Freshwater Biology, 14, 323–328

    Article  Google Scholar 

  • Hladyz, S., Åbjörnsson, K., Giller, P. S., & Woodward, G. (2011). Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. Journal of Applied Ecology, 48, 443–452

    Article  Google Scholar 

  • Hunting, E. R., Vonk, J. A., Musters, C. J. M., Kraak, M. H. S., & Vijver, M. G. (2016). Effects of agricultural practices on organic matter degradation in ditches. Scientific Reports, 6, 1–9

    Article  Google Scholar 

  • Imberger, S. J., Thompson, R. M., & Grace, M. R. (2010). Searching for effective indicators of ecosystem function in urban streams: Assessing cellulose decomposition potential. Freshwater Biology, 55, 2089–2106

    Article  Google Scholar 

  • Irons, J. G., Oswood, M. W., Stout, R. J., & Pringle, C. M. (1994). Latitudinal patterns in leaf litter breakdown: Is temperature really important? Freshwater Biology, 32, 401–411

    Article  Google Scholar 

  • Jabiol, J., McKie, B. G., Bruder, A., Bernadet, C., Gessner, M. O., & Chauvet, E. (2013). Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. Journal of Animal Ecology, 82, 1042–1051

    Article  Google Scholar 

  • Jenkins, G. B., Woodward, G., & Hildrew, A. G. (2013). Long-term amelioration of acidity accelerates decomposition in headwater streams. Global Change Biology, 19, 1100–1106

    Article  PubMed  Google Scholar 

  • Kampfraath, A. A., Hunting, E. R., Mulder, C., Breure, A. M., Gessner, M. O., Kraak, M. H. S., & Admiraal, W. (2012). DECOTAB: A multipurpose standard substrate to assess effects of litter quality on microbial decomposition and invertebrate consumption. Freshwater Science, 31, 1156–1162

    Article  Google Scholar 

  • Karr, J. (1999). Defining and measuring river health. Freshwater Biology, 41, 221–234

    Article  Google Scholar 

  • Kennedy, K. T. M., & El-Sabaawi, R. W. (2017). A global meta-analysis of exotic versus native leaf decay in stream ecosystems. Freshwater Biology, 62, 977–989

    Article  CAS  Google Scholar 

  • Kilgour, B. W., & Stanfield, L. W. (2006). Hindcasting reference conditions in streams. American Fisheries Society Symposium, 48, 623–639

    Google Scholar 

  • Kominoski, J. S., Rosemond, A. D., Benstead, J. P., Gulis, V., & Manning, D. W. P. (2018). Experimental nitrogen and phosphorus additions increase rates of stream ecosystem respiration and carbon loss. Limnology and Oceanography, 63, 22–36

    Article  CAS  Google Scholar 

  • Launois, L., Veslot, J., Irz, P., & Argillier, C. (2011). Development of a fish-based index (FBI) of biotic integrity for French lakes using the hindcasting approach. Ecological Indicators, 11, 1572–1583

    Article  Google Scholar 

  • Lecerf, A. (2017). Methods for estimating the effect of litterbag mesh size on decomposition. Ecological Modelling, 362, 65–68

    Article  Google Scholar 

  • Lecerf, A., & Chauvet, E. (2008). Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology, 9, 598–605

    Article  Google Scholar 

  • Lecerf, A., Usseglio-Polatera, P., Charcosset, J.-Y., Lambrigot, D., Bracht, B., & Chauvet, E. (2006). Assessment of functional integrity of eutrophic streams using litter breakdown and benthic macroinvertebrates. Archiv Für Hydrobiologie, 165, 105–126

    Article  CAS  Google Scholar 

  • Ledger, M., & Hildrew, A. (2005). The ecology of acidification and recovery: Changes in herbivore-algal food web linkages across a stream pH gradient. Environmental Pollution, 137, 103–118

    Article  CAS  PubMed  Google Scholar 

  • Lepori, F., Palm, D., & Malmqvist, B. (2005). Effects of stream restoration on ecosystem functioning: Detritus retentiveness and decomposition. Journal of Applied Ecology, 42, 228–238

    Article  Google Scholar 

  • Leroy, C. J., Whitham, T. G., Wooley, S. C., & Marks, J. C. (2007). Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. Journal of the North American Benthological Society, 26, 426–438

    Article  Google Scholar 

  • Majdi, N., Boiché, A., Traunspurger, W., & Lecerf, A. (2014). Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions. Journal of Animal Ecology, 83, 953–962

    Article  Google Scholar 

  • McArthur, J., Aho, J., Rader, R., & Mills, G. L. (1994). Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. Journal of the North American Benthological Society, 13, 57–67

    Article  Google Scholar 

  • McKie, B., & Cranston, P. (2001). Colonisation of experimentally immersed wood in south eastern Australia: Responses of feeding groups to changes in riparian vegetation. Hydrobiologia, 452, 1–14

    Article  Google Scholar 

  • McKie, B. G., & Malmqvist, B. (2009). Assessing ecosystem functioning in streams affected by forest management: Increased leaf decomposition occurs without changes to the composition of benthic assemblages. Freshwater Biology, 54, 2086–2100

    Article  Google Scholar 

  • McKie, B. G., Woodward, G., Hladyz, S., Nistorescu, M., Preda, E., Popescu, C., Giller, P. S., & Malmqvist, B. (2008). Ecosystem functioning in stream assemblages from different regions: Contrasting responses to variation in detritivore richness, evenness and density. Journal of Animal Ecology, 77, 495–504

    Article  CAS  Google Scholar 

  • McTammany, M. E., Benfield, E. F., & Webster, J. R. (2008). Effects of agriculture on wood breakdown and microbial biofilm respiration in southern Appalachian streams. Freshwater Biology, 53, 842–854

    Article  CAS  Google Scholar 

  • Mendoza-Lera, C., Larrañaga, A., Pérez, J., Descals, E., Martínez, A., Moya, O., Arostegui, I., & Pozo, J. (2012). Headwater reservoirs weaken terrestrial-aquatic linkage by slowing leaf-litter processing in downstream regulated reaches. River Research and Applications, 28, 13–22

    Article  Google Scholar 

  • Migliorini, G. H., Srivastava, D. S., & Romero, G. Q. (2018). Leaf litter traits drive community structure and functioning in a natural aquatic microcosm. Freshwater Biology, 63, 341–352

    Article  CAS  Google Scholar 

  • Mollá, S., Casas, J. J., Menéndez, M., Basaguren, A., Casado, C., Descals, E., González, J. M., Larrañaga, A., Lusi, M., Martínez, A., Mendoza-Lera, C., Moya, O., Pérez, J., Riera, T., Roblas, N., & Pozo, J. (2017). Leaf-litter breakdown as an indicator of the impacts by flow regulation in headwater streams: Responses across climatic regions. Ecological Indicators, 73, 11–22

    Article  Google Scholar 

  • Mondy, C. P., Villeneuve, B., Archaimbault, V., & Usseglio-Polatera, P. (2012). A new macroinvertebrate-based multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: A taxonomical and trait approach. Ecological Indicators, 18, 452–467

    Article  Google Scholar 

  • Moretti, M. S., Loyola, R. D., Becker, B., & Callisto, M. (2009). Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae). Hydrobiologia, 630, 199–206

    Article  CAS  Google Scholar 

  • Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322–331

    Article  Google Scholar 

  • Ostrofsky, M. (1997). Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society, 16, 750–759

    Article  Google Scholar 

  • Pascoal, C., & Cássio, F. (2004). Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology, 70, 5266–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoal, C., Pinho, M., Cássio, F., & Gomes, P. (2003). Assessing structural and functional ecosystem condition using leaf breakdown: Studies on a polluted river. Freshwater Biology, 48, 2033–2044

    Article  Google Scholar 

  • Pope, R. J., Gordon, A. M., & Kaushik, N. K. (1999). Leaf litter colonization by invertebrates in the littoral zone of a small oligotrophic lake. Hydrobiologia, 392, 99–112

    Article  Google Scholar 

  • Quintão, J. M. B., Rezende, R. S., & Júnior, J. F. G. (2013). Microbial effects in leaf breakdown in tropical reservoirs of different trophic status. Freshwater Science, 32, 933–950

    Article  Google Scholar 

  • R Core Team. (2015). R: A language and environment for statistical computing. https://www.R-project.org/.

  • Raposeiro, P. M., Ferreira, V., Guri, R., Gonçalves, V., & Martins, G. M. (2016). Leaf litter decomposition on insular lentic systems: Effects of macroinvertebrate presence, leaf species, and environmental conditions. Hydrobiologia, 1–15.

    Google Scholar 

  • Rasmussen, J. J., Wiberg-Larsen, P., Baattrup-Pedersen, A., Monberg, R. J., & Kronvang, B. (2012). Impacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams. Science of the Total Environment, 416, 148–155

    Article  CAS  Google Scholar 

  • Rincón, J., & Covich, A. (2014). Effects of insect and decapod exclusion and leaf litter species identity on breakdown rates in a tropical headwater stream. Revista De Biología Tropical, 62, 143–154

    Article  PubMed  Google Scholar 

  • Rincón, J., & Martínez, I. (2006). Food quality and feeding preferences of Phylloicus sp. (Trichoptera:Calamoceratidae). Journal of the North American Benthological Society, 25, 209–215

    Article  Google Scholar 

  • Rivas, D., Ginebreda, A., Elosegi, A., Pozo, J., Pérez, S., Quero, C., & Barceló, D. (2016). Using a polymer probe characterized by MALDI-TOF/MS to assess river ecosystem functioning: From polymer selection to field tests. Science of the Total Environment, 573, 532–540

    Article  CAS  Google Scholar 

  • Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W. P., Suberkropp, K., & Wallace, J. B. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 347, 1142–1145

    Article  CAS  PubMed  Google Scholar 

  • Rosi-Marshall, E. J., Tank, J. L., Royer, T. V., Whiles, M. R., Evans-White, M., Chambers, C., Griffiths, N. A., Pokelsek, J., & Stephen, M. L. (2007). Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proceedings of the National Academy of Sciences of the USA, 104, 16204–16208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabater, S., Bregoli, F., Acuña, V., Barceló, D., Elosegi, A., Ginebreda, A., Marcé, R., Muñoz, I., Sabater-Liesa, L., & Ferreira, V. (2018). Effects of human-driven water stress on river ecosystems: A meta-analysis. Scientific Reports, 8, 11462

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanpera-Calbet, I., Lecerf, A., & Chauvet, E. (2009). Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshwater Biology, 54, 1671–1682

    Article  Google Scholar 

  • von Schiller, D., Acuña, V., Aristi, I., Arroita, M., Basaguren, A., Bellin, A., Boyero, L., Butturini, A., Ginebreda, A., Kalogianni, E., Larrañaga, A., Majone, B., Martínez, A., Monroy, S., Muñoz, I., Paunović, M., Pereda, O., Petrovic, M., Pozo, J., … Elosegi, A. (2017). River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors. Science of the Total Environment, 596–597, 465–480

    Article  Google Scholar 

  • Schindler, M. H., & Gessner, M. O. (2009). Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology, 90, 1641–1649

    Article  PubMed  Google Scholar 

  • Schlief, J., & Mutz, M. (2011). Leaf decay processes during and after a supra-seasonal hydrological drought in a temperate lowland stream. International Review of Hydrobiology, 96, 633–655

    Article  CAS  Google Scholar 

  • Seelen, L. M. S., Flaim, G., Keuskamp, J., Teurlincx, S., Arias Font, R., Tolunay, D., Fránková, M., Šumberová, K., Temponeras, M., Lenhardt, M., Jennings, E., & de Senerpont Domis, L. N. (2019). An affordable and reliable assessment of aquatic decomposition: Tailoring the Tea Bag Index to surface waters. Water Research, 151, 31–43

    Article  CAS  Google Scholar 

  • Silva, M., Rezende, R., & Ferreira, R. L. (2013). Detritus processing in lentic cave habitats in the neotropics. Subterranean Biology, 11, 3–14

    Article  Google Scholar 

  • Soranno, P. A., Wagner, T., Martin, S. L., McLean, C., Novitski, L. N., Provence, C. D., & Rober, A. R. (2011). Quantifying regional reference conditions for freshwater ecosystem management: A comparison of approaches and future research needs. Lake and Reservoir Management, 27, 138–148

    Article  Google Scholar 

  • Taylor, B. R., & Chauvet, E. E. (2014). Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient. Hydrobiologia, 721, 239–250

    Article  CAS  Google Scholar 

  • The European Parliament. (2015). Directive 2008/94/EC of the European Parliament and of the Council of 22 October 2008. In Core EU Legislation (pp. 423–426). Macmillan Education.

    Google Scholar 

  • Tiegs, S. D., Costello, D. M., Isken, M. W., Woodward, G., McIntyre, P. B., Gessner, M. O., Chauvet, E., Griffiths, N. A., Flecker, A. S., Acuña, V., Albariño, R., Allen, D. C., Alonso, C., Andino, P., Arango, C., Aroviita, J., Barbosa, M. V. M., Barmuta, L. A., Baxter, C. V., … and Zwart, J. A. (2019). Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 5, eaav0486.

    Google Scholar 

  • Tonin, A. M., Gonçalves, J. F., Bambi, P., Couceiro, S. R. M., Feitoza, L. A. M., Fontana, L. E., Hamada, N., Hepp, L. U., Lezan-Kowalczuk, V. G., Leite, G. F. M., Lemes-Silva, A. L., Lisboa, L. K., Loureiro, R. C., Martins, R. T., Medeiros, A. O., Morais, P. B., Moretto, Y., Oliveria, P. C. A., Pereira, E. B., … Boyero, L. (2017). Plant litter dynamics in the forest-stream interface: Precipitation is a major control across tropical biomes. Scientific Reports, 7, 1–14

    Article  Google Scholar 

  • USEPA. (2016). A practitioner’s guide to the biological condition gradient: A framework to describe incremental change in aquatic ecosystems. In U.S. environmental protection agency (p. 250).

    Google Scholar 

  • van Gestel, C. A. M., Kruidenier, M., & Berg, M. P. (2003). Suitability of wheat straw decomposition, cotton strip degradation and bait-lamina feeding tests to determine soil invertebrate activity. Biology and Fertility of Soils, 37, 115–123

    Article  Google Scholar 

  • van Dokkum, H. P., Slijkerman, D. M. E., Rossi, L., & Costantini, M. L. (2002). Variation in the decomposition of Phragmites australis litter in a monomictic lake: The role of gammarids. Hydrobiologia, 482, 69–77

    Article  Google Scholar 

  • Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48

    Article  Google Scholar 

  • Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graça, M. A. S., Fleituch, T., Lacoursière, J., Nistorescu, M., Pozo, J., Risnoveanu, G., … Chauvet, E. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336, 1438–1440

    Article  CAS  PubMed  Google Scholar 

  • Yeung, A. C. Y., Kreutzweiser, D. P., & Richardson, J. S. (2019). Stronger effects of litter origin on the processing of conifer than broadleaf leaves: A test of home-field advantage of stream litter breakdown. Freshwater Biology, 64, 1755–1768

    Article  Google Scholar 

  • Yeung, A. C. Y., Musetta‐Lambert, J. L., Kreutzweiser, D. P., Sibley, P. K., & Richardson, J. S. (2018). Relations of interannual differences in stream litter breakdown with discharge: Bioassessment implications. Ecosphere, 9, e02423

    Google Scholar 

  • Young, R., Matthaei, C., & Townsend, C. R. (2008). Organic matter breakdown and ecosystem metabolism: Functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society, 27, 605–625

    Article  Google Scholar 

  • Zhai, Y., Brun, N. R., Bundschuh, M., Schrama, M., Hin, E., Vijver, M. G., & Hunting, E. R. (2018). Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates. Aquatic Sciences, 80, 44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Frainer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frainer, A., Bruder, A., Colas, F., Ferreira, V., McKie, B.G. (2021). Plant Litter Decomposition as a Tool for Stream Ecosystem Assessment. In: Swan, C.M., Boyero, L., Canhoto, C. (eds) The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-72854-0_21

Download citation

Publish with us

Policies and ethics