Abstract
The decomposition of plant litter in freshwaters is an integrative process involving multiple organism groups and connecting terrestrial and freshwater ecosystems. The quantification of leaf litter decomposition has been advocated as an effective indicator of ecosystem functional integrity in the bioassessment of freshwaters. Indeed, variation in litter decomposition rates has been used to detect the impacts of a wide range of anthropogenic disturbances on the functioning of detritus-based food webs in freshwater ecosystems, particularly in streams. However, these assessments have almost exclusively been undertaken as part of research projects, and the application of litter decomposition as a tool in routine biomonitoring remains limited. We evaluate the potential for litter decomposition as a tool for ecosystem assessment by environmental agencies and managers, drawing on insights and experiences from three lines of evidence: (i) a broad selection of published research projects, (ii) an existing national-scale monitoring program and (iii) a meta-analysis comparing litter decomposition rates between nutrient-enriched and reference sites. We use this as a basis for discussing inter alia common substrates used in decomposition assays, alternatives for field protocols and sampling designs, and the use of different indices and reference conditions when arriving at an assessment of functional status.
This is a preview of subscription content, access via your institution.
Buying options



References
Abelho, M., & Canhoto, C. (2020). The role of carbon, nitrogen, and phosphorus in leaf decomposition mediated by aquatic fungi. Limnetica, 39, 275–282
Abril, M., Muñoz, I., Casas-Ruiz, J. P., Gómez-Gener, L., Barceló, M., Oliva, F., & Menéndez, M. (2015). Effects of water flow regulation on ecosystem functioning in a Mediterranean river network assessed by wood decomposition. Science of the Total Environment, 517, 57–65
Alp, M., Cucherousset, J., Buoro, M., & Lecerf, A. (2016). Phenological response of a key ecosystem function to biological invasion. Ecology Letters, 19, 519–527
Armitage, P., Moss, D., & Wright, J. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research, 17, 333–347
Arroita, M., Aristi, I., Flores, L., Larrañaga, A., Díez, J., Mora, J., Romaní, A. M., & Elosegi, A. (2012). The use of wooden sticks to assess stream ecosystem functioning: Comparison with leaf breakdown rates. Science of the Total Environment, 440, 115–122
Baldy, V., Gessner, M. O., & Chauvet, E. (1995). Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos, 74, 93–102
Baldy, V., Gobert, V., Guerold, F., Chauvet, E., Lambrigot, D., & Charcosset, J. Y. (2007). Leaf litter breakdown budgets in streams of various trophic status: Effects of dissolved inorganic nutrients on microorganisms and invertebrates. Freshwater Biology, 52, 1322–1335
Benavides-Gordillo, S., Farjalla, V. F., González, A. L., & Romero, G. Q. (2019). Changes in rainfall level and litter stoichiometry affect aquatic community and ecosystem processes in bromeliad phytotelmata. Freshwater Biology, 64, 1357–1368
Boulton, A. J. (1999). An overview of river health assessment: Philosophies, practice, problems and prognosis. Freshwater Biology, 41, 469–479
Boulton, A. J., & Quinn, J. M. (2000). A simple and versatile technique for assessing cellulose decomposition potential in floodplain and riverine sediments. Archiv für Hydrobiologie, 150(1), 133–151.
Boyero, L., Pearson, R. G., Dudgeon, D., Graça, M. A. S., Gessner, M. O., Albariño, R. J., Ferreira, V., Yule, C. M., Boulton, A. J., Arunachalam, M., Callisto, M., Chauvet, E., Ramirez, A., Chara, J., Moretti, M. S., Gonçalves, J. F., Jr., Helson, J. E., Chará-Serna, A. M., Encalada, A. C., … Pringle, C. M. (2011). Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology, 92, 1839–1848
Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., Davies, J. N., Figueroa, R., Flecker, A. S., Ramirez, A., … West, D. C. (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14, 289–294
Bruder, A., Frainer, A., Rota, T., & Primicerio, R. (2019). The Importance of ecological networks in multiple-stressor research and management. Frontiers in Environmental Science, 7, 59
Bruder, A., Salis, R. K., McHugh, N. J., & Matthaei, C. D. (2016). Multiple-stressor effects on leaf litter decomposition and fungal decomposers in agricultural streams contrast between litter species. Functional Ecology, 30(7), 1257–1266.
Bruder, A., Schindler, M. H., Moretti, M. S., & Gessner, M. O. (2014). Litter decomposition in a temperate and a tropical stream: The effects of species mixing, litter quality and shredders. Freshwater Biology, 59, 438–449
Bundschuh, M., & McKie, B. G. (2016). An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Freshwater Biology, 61, 2063–2074
Burdon, F. J., Ramberg, E., Sargac, J., Forio, M. A. E., de Saeyer, N., Mutinova, P. T., Moe, T. F., Pavelescu, M. O., Dinu, V., Cazacu, C., Witing, F., Kupilas, B., Grandin, U., Volk, M., Rîşnoveanu, G., Goethals, P., Friberg, N., Johnson, R. K., & McKie, B. G. (2020). Assessing the benefits of forested riparian zones: A qualitative index of riparian integrity is positively associated with ecological status in European streams. Water, 12, 1178
Carvalho, C., Hepp, L. U., Palma-Silva, C., & Albertoni, E. F. (2015). Decomposition of macrophytes in a shallow subtropical lake. Limnologica, 53, 1–9
Castela, J., Ferreira, V., & Graça, M. A. S. (2008). Evaluation of stream ecological integrity using litter decomposition and benthic invertebrates. Environmental Pollution, 153, 440–449
Chadwick, M., & Huryn, A. (2003). Effect of a whole-catchment N addition on stream detritus processing. Journal of the North American Benthological Society, 22, 194–206
Chauvet, E., Ferreira, V., Giller, P. S., McKie, B. G., Tiegs, S. D., Woodward, G., Elosegi, A., Dobson, M., Fleituch, T., Graça, M. A. S., Gulis, V., Hladyz, S., Lacoursière, J. O., Lecerf, A., Pozo, J., Preda, E., Riipinen, M., Rîşnoveanu, G., Vadineanu, A., … Gessner, M. O. (2016). Litter decomposition as an indicator of stream ecosystem functioning at local-to-continental scales: Insights from the European RivFunction project. In A. J. Dumbrell, R. L. Kordas, & G. Woodward (Eds.), Advances in Ecological Research (Chap. 3, pp. 99–182). Academic Press.
Clapcott, J. E., Collier, K. J., Death, R. G., Goodwin, E. O., Harding, J. S., Kelly, D., Leathwick, J. R., & Young, R. G. (2012). Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshwater Biology, 57, 74–90
Colas, F., Baudoin, J.-M., Chauvet, E., Clivot, H., Danger, M., Guérold, F., & Devin, S. (2016). Dam-associated multiple-stressor impacts on fungal biomass and richness reveal the initial signs of ecosystem functioning impairment. Ecological Indicators, 60, 1077–1090
Colas, F., Baudoin, J.-M., Danger, M., Usseglio-Polatera, P., Wagner, P., & Devin, S. (2013). Synergistic impacts of sediment contamination and dam presence on river functioning. Freshwater Biology, 58, 320–336
Colas, F., Baudoin, J.-M., Gob, F., Tamisier, V., Valette, L., Kreutzenberger, K., Lambrigot, D., & Chauvet, E. (2017). Scale dependency in the hydromorphological control of a stream ecosystem functioning. Water Research, 115, 60–73
Colas, F., Woodward, G., Burdon, F. J., Guérold, F., Chauvet, E., Cornut, J., Cébron, A., Clivot, H., Danger, M., Danner, M. C., Pagnout, C., & Tiegs, S. D. (2019). Towards a simple global-standard bioassay for a key ecosystem process: Organic-matter decomposition using cotton strips. Ecological Indicators, 106, 105466
Collier, K., Clapcott, J., & Neale, M. (2014). A macroinvertebrate attribute to assess ecosystem health for New Zealand waterways for the national objectives framework—Issues and options. University of Waikato.
Connolly, N. M., & Pearson, R. G. (2013). Nutrient enrichment of a heterotrophic stream alters leaf litter nutritional quality and shredder physiological condition via the microbial pathway. Hydrobiologia, 718, 85–92
Dahl, J., & Johnson, R. K. (2004). A multimetric macroinvertebrate index for detecting organic pollution of streams in southern Sweden. Archiv Für Hydrobiologie, 160, 487–513
Downs, P., Ms, S., Bk, O., Ze, D., Tc, C., & Jc, S. (2011). Restoring ecological integrity in highly regulated rivers: The role of baseline data and analytical references. Environmental Management, 48, 847–864
Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 455–463
Elias, C. L., Calapez, A. R., Almeida, S. F. P., Chessman, B., Simões, N., & Feio, M. J. (2016). Predicting reference conditions for river bioassessment by incorporating boosted trees in the environmental filters method. Ecological Indicators, 69, 239–251
Elosegi, A., Gessner, M. O., & Young, R. G. (2017). River doctors: Learning from medicine to improve ecosystem management. Science of the Total Environment, 595, 294–302
Enriquez, S., Duarte, C., & Sand-Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N: P content. Oecologia, 94, 457–471
Entrekin, S. A., Tank, J. L., Rosi-Marshall, E. J., Hoellein, T. J., & Lamberti, G. A. (2008). Responses in organic matter accumulation and processing to an experimental wood addition in three headwater streams. Freshwater Biology, 53, 1642–1657
Feio, M. J., Aguiar, F. C., Almeida, S. F. P., Ferreira, J., Ferreira, M. T., Elias, C., Serra, S. R. Q., Buffagni, A., Cambra, J., Chauvin, C., Delmas, F., Dörflinger, G., Erba, S., Flor, N., Ferréol, M., Germ, M., Mancini, L., Manolaki, P., Marcheggiani, S., … Vieira, C. (2014). Least disturbed condition for European Mediterranean rivers. Science of the Total Environment, 476–477, 745–756
Feio, M. J., Alves, T., Boavida, M., Medeiros, A., & Graça, M. A. S. (2010). Functional indicators of stream health: A river-basin approach. Freshwater Biology, 55, 1050–1065
Feld, C. K., Birk, S., Bradley, D. C., Hering, D., Kail, J., Marzin, A., Melcher, A., Nemitz, D., Pedersen, M. L., Pletterbauer, F., Pont, D., Verdonschot, P. F. M., & Friberg, N. (2011). From natural to degraded rivers and back again: A test of restoration ecology theory and practice. In G. Woodward (ed.), Advances in Ecological Research (Chap. 3, pp. 119–209). Academic Press.
Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves, J. F., Goyenola, G., Graça, M. A. S., Hepp, L. U., Kariuki, S., López-Rodríguez, A., Mazzeo, N., M’Erimba, C., Monroy, S., Peil, A., Pozo, J., Rezende, R., & Teixeira-de-Mello, F. (2019). A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems, 22, 629–642
Ferreira, V., Castagneyrol, B., Koricheva, J., Gulis, V., Chauvet, E., & Graça, M. A. S. (2015). A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews, 90, 669–688
Ferreira, V., Encalada, A. C., & Graça, M. A. S. (2012). Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science, 31, 945–962
Ferreira, V., & Guérold, F. (2017). Leaf litter decomposition as a bioassessment tool of acidification effects in streams: Evidence from a field study and meta-analysis. Ecological Indicators, 79, 382–390
Ferreira, V., Gulis, V., & Graça, M. A. S. (2006). Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia, 149, 718–729
Ferreira, V., Koricheva, J., Duarte, S., Niyogi, D. K., & Guérold, F. (2016). Effects of anthropogenic heavy metal contamination on litter decomposition in streams—A meta-analysis. Environmental Pollution, 210, 261–270
Ferreira, V., Koricheva, J., Pozo, J., & Graça, M. A. S. (2016). A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. Forest Ecology and Management, 364, 27–38
Ferreira, V., Raposeiro, P. M., Pereira, A., Cruz, A. M., Costa, A. C., Graça, M. A. S., & Gonçalves, V. (2016). Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology, 61, 783–799
Flores, L., Larrañaga, A., Díez, J., & Elosegi, A. (2011). Experimental wood addition in streams: Effects on organic matter storage and breakdown. Freshwater Biology, 56, 2156–2167
Flury, S., & Gessner, M. O. (2011). Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh. Applied and Environmental Microbiology, 77, 803–809
Frainer, A., Jabiol, J., Gessner, M. O., Bruder, A., Chauvet, E., & McKie, B. G. (2016). Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos, 125, 861–871
Frainer, A., & McKie, B. G. (2015). Shifts in the diversity and composition of consumer traits constrain the effects of land use on stream ecosystem functioning. Advances in Ecological Research, 52, 169–200
Frainer, A., McKie, B. G., & Malmqvist, B. (2014). When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. Journal of Animal Ecology, 83, 460–469
Frainer, A., Moretti, M. S., Xu, W., & Gessner, M. O. (2015). No evidence for leaf trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology, 96, 550–561
Frainer, A., Polvi, L. E., Jansson, R., & McKie, B. G. (2018). Enhanced ecosystem functioning following stream restoration: The roles of habitat heterogeneity and invertebrate species traits. Journal of Applied Ecology, 55, 377–385
Galas, J., Bednarz, T., Dummicka, E., Starzecka, A., & Wojtan, K. (1996). Litter decomposition in a mountain cave water. Archiv Für Hydrobiologie, 138, 199–211
Gardeström, J., Ermold, M., Goedkoop, W., & McKie B. G. (2016). Disturbance history influences stressor impacts: effects of a fungicide and nutrients on microbial diversity and litter decomposition. Freshwater Biology, 61, 2171–2184
Gessner, M. O., & Chauvet, E. (1994). Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology, 75, 1807–1817
Gessner, M. O., & Chauvet, E. (2002). A case for using litter breakdown to assess functional stream integrity. Ecological Applications, 12, 498–510
Gjerløv, C., & Richardson, J. S. (2004). Patchy resources in a heterogeneous environment: Effects of leaf litter and forest cover on colonisation patterns of invertebrates in a British Columbian stream. Archiv Für Hydrobiologie, 161, 307–327
Graça, M. A. S., & Poquet, J. M. (2014). Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia, 174, 1021–1032
Grossman, J. J., Cavender‐Bares, J., & Hobbie, S. E. (2020). Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecological Monographs, 90, e01407.
Gulis, V., Ferreira, V., & Graça, M. A. S. (2006). Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: Implications for stream assessment. Freshwater Biology, 51, 1655–1669
Gulis, V., & Suberkropp, K. (2003). Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology, 48, 123–134
Halvorson, H. M., Fuller, C. L., Entrekin, S. A., Scott, J. T., & Evans-White, M. A. (2018). Detrital nutrient content and leaf species differentially affect growth and nutritional regulation of detritivores. Oikos, 127, 1471–1481
Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., Chauvet, E., Gessner, M. O., Jabiol, J., Makkonen, M., McKie, B. G., Malmqvist, B., Peeters, E. T. H. M., Scheu, S., Schmid, B., van Ruijven, J., Vos, V. C. A., & Hättenschwiler, S. (2014). Consequences of Biodiversity Loss for Litter Decomposition Across Biomes. Nature, 509, 218–221
Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150–1156
Hernández, A. D., & Sukhdeo, M. V. K. (2008). Parasite effects on isopod feeding rates can alter the host’s functional role in a natural stream ecosystem. International Journal for Parasitology, 38, 683–690
Hieber, M., & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83, 1026–1038
Hildrew, A. G., Townsend, C. R., Francis, J., & Finch, K. (1984). Cellulolytic decomposition in streams of contrasting pH and its relationship with invertebrate community structure. Freshwater Biology, 14, 323–328
Hladyz, S., Åbjörnsson, K., Giller, P. S., & Woodward, G. (2011). Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. Journal of Applied Ecology, 48, 443–452
Hunting, E. R., Vonk, J. A., Musters, C. J. M., Kraak, M. H. S., & Vijver, M. G. (2016). Effects of agricultural practices on organic matter degradation in ditches. Scientific Reports, 6, 1–9
Imberger, S. J., Thompson, R. M., & Grace, M. R. (2010). Searching for effective indicators of ecosystem function in urban streams: Assessing cellulose decomposition potential. Freshwater Biology, 55, 2089–2106
Irons, J. G., Oswood, M. W., Stout, R. J., & Pringle, C. M. (1994). Latitudinal patterns in leaf litter breakdown: Is temperature really important? Freshwater Biology, 32, 401–411
Jabiol, J., McKie, B. G., Bruder, A., Bernadet, C., Gessner, M. O., & Chauvet, E. (2013). Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. Journal of Animal Ecology, 82, 1042–1051
Jenkins, G. B., Woodward, G., & Hildrew, A. G. (2013). Long-term amelioration of acidity accelerates decomposition in headwater streams. Global Change Biology, 19, 1100–1106
Kampfraath, A. A., Hunting, E. R., Mulder, C., Breure, A. M., Gessner, M. O., Kraak, M. H. S., & Admiraal, W. (2012). DECOTAB: A multipurpose standard substrate to assess effects of litter quality on microbial decomposition and invertebrate consumption. Freshwater Science, 31, 1156–1162
Karr, J. (1999). Defining and measuring river health. Freshwater Biology, 41, 221–234
Kennedy, K. T. M., & El-Sabaawi, R. W. (2017). A global meta-analysis of exotic versus native leaf decay in stream ecosystems. Freshwater Biology, 62, 977–989
Kilgour, B. W., & Stanfield, L. W. (2006). Hindcasting reference conditions in streams. American Fisheries Society Symposium, 48, 623–639
Kominoski, J. S., Rosemond, A. D., Benstead, J. P., Gulis, V., & Manning, D. W. P. (2018). Experimental nitrogen and phosphorus additions increase rates of stream ecosystem respiration and carbon loss. Limnology and Oceanography, 63, 22–36
Launois, L., Veslot, J., Irz, P., & Argillier, C. (2011). Development of a fish-based index (FBI) of biotic integrity for French lakes using the hindcasting approach. Ecological Indicators, 11, 1572–1583
Lecerf, A. (2017). Methods for estimating the effect of litterbag mesh size on decomposition. Ecological Modelling, 362, 65–68
Lecerf, A., & Chauvet, E. (2008). Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology, 9, 598–605
Lecerf, A., Usseglio-Polatera, P., Charcosset, J.-Y., Lambrigot, D., Bracht, B., & Chauvet, E. (2006). Assessment of functional integrity of eutrophic streams using litter breakdown and benthic macroinvertebrates. Archiv Für Hydrobiologie, 165, 105–126
Ledger, M., & Hildrew, A. (2005). The ecology of acidification and recovery: Changes in herbivore-algal food web linkages across a stream pH gradient. Environmental Pollution, 137, 103–118
Lepori, F., Palm, D., & Malmqvist, B. (2005). Effects of stream restoration on ecosystem functioning: Detritus retentiveness and decomposition. Journal of Applied Ecology, 42, 228–238
Leroy, C. J., Whitham, T. G., Wooley, S. C., & Marks, J. C. (2007). Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. Journal of the North American Benthological Society, 26, 426–438
Majdi, N., Boiché, A., Traunspurger, W., & Lecerf, A. (2014). Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions. Journal of Animal Ecology, 83, 953–962
McArthur, J., Aho, J., Rader, R., & Mills, G. L. (1994). Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. Journal of the North American Benthological Society, 13, 57–67
McKie, B., & Cranston, P. (2001). Colonisation of experimentally immersed wood in south eastern Australia: Responses of feeding groups to changes in riparian vegetation. Hydrobiologia, 452, 1–14
McKie, B. G., & Malmqvist, B. (2009). Assessing ecosystem functioning in streams affected by forest management: Increased leaf decomposition occurs without changes to the composition of benthic assemblages. Freshwater Biology, 54, 2086–2100
McKie, B. G., Woodward, G., Hladyz, S., Nistorescu, M., Preda, E., Popescu, C., Giller, P. S., & Malmqvist, B. (2008). Ecosystem functioning in stream assemblages from different regions: Contrasting responses to variation in detritivore richness, evenness and density. Journal of Animal Ecology, 77, 495–504
McTammany, M. E., Benfield, E. F., & Webster, J. R. (2008). Effects of agriculture on wood breakdown and microbial biofilm respiration in southern Appalachian streams. Freshwater Biology, 53, 842–854
Mendoza-Lera, C., Larrañaga, A., Pérez, J., Descals, E., Martínez, A., Moya, O., Arostegui, I., & Pozo, J. (2012). Headwater reservoirs weaken terrestrial-aquatic linkage by slowing leaf-litter processing in downstream regulated reaches. River Research and Applications, 28, 13–22
Migliorini, G. H., Srivastava, D. S., & Romero, G. Q. (2018). Leaf litter traits drive community structure and functioning in a natural aquatic microcosm. Freshwater Biology, 63, 341–352
Mollá, S., Casas, J. J., Menéndez, M., Basaguren, A., Casado, C., Descals, E., González, J. M., Larrañaga, A., Lusi, M., Martínez, A., Mendoza-Lera, C., Moya, O., Pérez, J., Riera, T., Roblas, N., & Pozo, J. (2017). Leaf-litter breakdown as an indicator of the impacts by flow regulation in headwater streams: Responses across climatic regions. Ecological Indicators, 73, 11–22
Mondy, C. P., Villeneuve, B., Archaimbault, V., & Usseglio-Polatera, P. (2012). A new macroinvertebrate-based multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: A taxonomical and trait approach. Ecological Indicators, 18, 452–467
Moretti, M. S., Loyola, R. D., Becker, B., & Callisto, M. (2009). Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae). Hydrobiologia, 630, 199–206
Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322–331
Ostrofsky, M. (1997). Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society, 16, 750–759
Pascoal, C., & Cássio, F. (2004). Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology, 70, 5266–5273
Pascoal, C., Pinho, M., Cássio, F., & Gomes, P. (2003). Assessing structural and functional ecosystem condition using leaf breakdown: Studies on a polluted river. Freshwater Biology, 48, 2033–2044
Pope, R. J., Gordon, A. M., & Kaushik, N. K. (1999). Leaf litter colonization by invertebrates in the littoral zone of a small oligotrophic lake. Hydrobiologia, 392, 99–112
Quintão, J. M. B., Rezende, R. S., & Júnior, J. F. G. (2013). Microbial effects in leaf breakdown in tropical reservoirs of different trophic status. Freshwater Science, 32, 933–950
R Core Team. (2015). R: A language and environment for statistical computing. https://www.R-project.org/.
Raposeiro, P. M., Ferreira, V., Guri, R., Gonçalves, V., & Martins, G. M. (2016). Leaf litter decomposition on insular lentic systems: Effects of macroinvertebrate presence, leaf species, and environmental conditions. Hydrobiologia, 1–15.
Rasmussen, J. J., Wiberg-Larsen, P., Baattrup-Pedersen, A., Monberg, R. J., & Kronvang, B. (2012). Impacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams. Science of the Total Environment, 416, 148–155
Rincón, J., & Covich, A. (2014). Effects of insect and decapod exclusion and leaf litter species identity on breakdown rates in a tropical headwater stream. Revista De Biología Tropical, 62, 143–154
Rincón, J., & Martínez, I. (2006). Food quality and feeding preferences of Phylloicus sp. (Trichoptera:Calamoceratidae). Journal of the North American Benthological Society, 25, 209–215
Rivas, D., Ginebreda, A., Elosegi, A., Pozo, J., Pérez, S., Quero, C., & Barceló, D. (2016). Using a polymer probe characterized by MALDI-TOF/MS to assess river ecosystem functioning: From polymer selection to field tests. Science of the Total Environment, 573, 532–540
Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W. P., Suberkropp, K., & Wallace, J. B. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 347, 1142–1145
Rosi-Marshall, E. J., Tank, J. L., Royer, T. V., Whiles, M. R., Evans-White, M., Chambers, C., Griffiths, N. A., Pokelsek, J., & Stephen, M. L. (2007). Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proceedings of the National Academy of Sciences of the USA, 104, 16204–16208
Sabater, S., Bregoli, F., Acuña, V., Barceló, D., Elosegi, A., Ginebreda, A., Marcé, R., Muñoz, I., Sabater-Liesa, L., & Ferreira, V. (2018). Effects of human-driven water stress on river ecosystems: A meta-analysis. Scientific Reports, 8, 11462
Sanpera-Calbet, I., Lecerf, A., & Chauvet, E. (2009). Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshwater Biology, 54, 1671–1682
von Schiller, D., Acuña, V., Aristi, I., Arroita, M., Basaguren, A., Bellin, A., Boyero, L., Butturini, A., Ginebreda, A., Kalogianni, E., Larrañaga, A., Majone, B., Martínez, A., Monroy, S., Muñoz, I., Paunović, M., Pereda, O., Petrovic, M., Pozo, J., … Elosegi, A. (2017). River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors. Science of the Total Environment, 596–597, 465–480
Schindler, M. H., & Gessner, M. O. (2009). Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology, 90, 1641–1649
Schlief, J., & Mutz, M. (2011). Leaf decay processes during and after a supra-seasonal hydrological drought in a temperate lowland stream. International Review of Hydrobiology, 96, 633–655
Seelen, L. M. S., Flaim, G., Keuskamp, J., Teurlincx, S., Arias Font, R., Tolunay, D., Fránková, M., Šumberová, K., Temponeras, M., Lenhardt, M., Jennings, E., & de Senerpont Domis, L. N. (2019). An affordable and reliable assessment of aquatic decomposition: Tailoring the Tea Bag Index to surface waters. Water Research, 151, 31–43
Silva, M., Rezende, R., & Ferreira, R. L. (2013). Detritus processing in lentic cave habitats in the neotropics. Subterranean Biology, 11, 3–14
Soranno, P. A., Wagner, T., Martin, S. L., McLean, C., Novitski, L. N., Provence, C. D., & Rober, A. R. (2011). Quantifying regional reference conditions for freshwater ecosystem management: A comparison of approaches and future research needs. Lake and Reservoir Management, 27, 138–148
Taylor, B. R., & Chauvet, E. E. (2014). Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient. Hydrobiologia, 721, 239–250
The European Parliament. (2015). Directive 2008/94/EC of the European Parliament and of the Council of 22 October 2008. In Core EU Legislation (pp. 423–426). Macmillan Education.
Tiegs, S. D., Costello, D. M., Isken, M. W., Woodward, G., McIntyre, P. B., Gessner, M. O., Chauvet, E., Griffiths, N. A., Flecker, A. S., Acuña, V., Albariño, R., Allen, D. C., Alonso, C., Andino, P., Arango, C., Aroviita, J., Barbosa, M. V. M., Barmuta, L. A., Baxter, C. V., … and Zwart, J. A. (2019). Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 5, eaav0486.
Tonin, A. M., Gonçalves, J. F., Bambi, P., Couceiro, S. R. M., Feitoza, L. A. M., Fontana, L. E., Hamada, N., Hepp, L. U., Lezan-Kowalczuk, V. G., Leite, G. F. M., Lemes-Silva, A. L., Lisboa, L. K., Loureiro, R. C., Martins, R. T., Medeiros, A. O., Morais, P. B., Moretto, Y., Oliveria, P. C. A., Pereira, E. B., … Boyero, L. (2017). Plant litter dynamics in the forest-stream interface: Precipitation is a major control across tropical biomes. Scientific Reports, 7, 1–14
USEPA. (2016). A practitioner’s guide to the biological condition gradient: A framework to describe incremental change in aquatic ecosystems. In U.S. environmental protection agency (p. 250).
van Gestel, C. A. M., Kruidenier, M., & Berg, M. P. (2003). Suitability of wheat straw decomposition, cotton strip degradation and bait-lamina feeding tests to determine soil invertebrate activity. Biology and Fertility of Soils, 37, 115–123
van Dokkum, H. P., Slijkerman, D. M. E., Rossi, L., & Costantini, M. L. (2002). Variation in the decomposition of Phragmites australis litter in a monomictic lake: The role of gammarids. Hydrobiologia, 482, 69–77
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48
Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graça, M. A. S., Fleituch, T., Lacoursière, J., Nistorescu, M., Pozo, J., Risnoveanu, G., … Chauvet, E. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336, 1438–1440
Yeung, A. C. Y., Kreutzweiser, D. P., & Richardson, J. S. (2019). Stronger effects of litter origin on the processing of conifer than broadleaf leaves: A test of home-field advantage of stream litter breakdown. Freshwater Biology, 64, 1755–1768
Yeung, A. C. Y., Musetta‐Lambert, J. L., Kreutzweiser, D. P., Sibley, P. K., & Richardson, J. S. (2018). Relations of interannual differences in stream litter breakdown with discharge: Bioassessment implications. Ecosphere, 9, e02423
Young, R., Matthaei, C., & Townsend, C. R. (2008). Organic matter breakdown and ecosystem metabolism: Functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society, 27, 605–625
Zhai, Y., Brun, N. R., Bundschuh, M., Schrama, M., Hin, E., Vijver, M. G., & Hunting, E. R. (2018). Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates. Aquatic Sciences, 80, 44
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Frainer, A., Bruder, A., Colas, F., Ferreira, V., McKie, B.G. (2021). Plant Litter Decomposition as a Tool for Stream Ecosystem Assessment. In: Swan, C.M., Boyero, L., Canhoto, C. (eds) The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-72854-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-72854-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72853-3
Online ISBN: 978-3-030-72854-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)