Skip to main content

Challenges in Transport Layer Design for Terahertz Communication-Based 6G Networks

  • Chapter
  • First Online:
6G Mobile Wireless Networks

Abstract

With the launch of 3GPP fifth-generation (5G) commercial cellular networks around the world, the research community has started focusing on the design of the sixth-generation (6G) system. One of the considerations is the use of Terahertz communications that aims to provide 1 Tbps (terabits per second) and air latency less than 100 μs. Further, 6G networks are expected to provide for more stringent Quality of Service (QoS) and mobility requirements. While addition to innovations at the physical layer and radio technologies can achieve these goals to a great extent, the end-to-end applications would still face challenges to fully utilize the network capacity due to limitations of the current transport layer protocols. In this chapter, we explore the challenges in the design of next-generation transport layer protocols (NGTP) in 6G Terahertz communication-based networks. Some of the challenges are due to user mobility, high-speed and high-bitrate communications, and other issues. The impact of these issues and potential approaches to mitigate these challenges are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 3GPP Specification Set: 5G (2020). https://www.3gpp.org/dynareport/SpecList.htm?release=Rel-15%26tech=4. Retrieved 6 Dec 2020

  2. J. Postel (Ed.),Transmission control protocol. RFC 793 (1981). Retrieved 6 Dec 2020

    Google Scholar 

  3. P.J. Mateo, C. Fiandrino, J. Widmer, Analysis of TCP performance in 5G mmWave mobile networks, in Proceedings of the IEEE International Conference on Communications (ICC) (2019), pp. 1–7

    Google Scholar 

  4. Next Generation Protocols (NGP); Scenarios Definition, V 1.1.1 (2016). https://www.etsi.org/deliver/etsi_gs/NGP/001_099/001/01.01.01_60/gs_NGP001v010101p.pdf. Retrieved 6 Dec 2020

  5. A. Ford, C. Raiciu, M.J. Handley, O. Bonaventure, C. Paasch, TCP Extensions for Multipath Operation with Multiple Addresses. RFC 8684 (2020). Retrieved 6 Dec 2020

    Google Scholar 

  6. N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh, V. Jacobson, BBR: congestion-based congestion control. ACM Queue 14, 20–53 (2016)

    Article  Google Scholar 

  7. L.S. Brakmo, L.L. Peterson, TCP Vegas: end to end congestion avoidance on a global internet. IEEE J. Selec. Areas Commun. 13, 1465–1480 (2006)

    Article  Google Scholar 

  8. A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, et al., The QUIC transport protocol: Design and internet-scale deployment, in Proceedings of ACM SIGCOMM (2017), pp. 183–196

    Google Scholar 

  9. V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, R.L. Braynard, Networking named content, in Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies (2009), pp. 1–12

    Google Scholar 

  10. E.P. Jones, L. Li, J.K. Schmidtke, P.A. Ward, Practical routing in delay-tolerant networks. IEEE Trans. Mobile Comput. 6(8), 943–959 (2007)

    Article  Google Scholar 

  11. Q.D. Coninck, O. Bonaventure, Multipath Extensions for QUIC (MP-QUIC). Internet-Draft draft-deconinck-quic-multipath-05, Internet Engineering Task Force (2020). Retrieved 6 Dec 2020

    Google Scholar 

  12. Usage statistics of QUIC for websites. https://w3techs.com/technologies/details/ce-quic. Retrieved 6 Dec 2020

  13. IRTF Information-Centric Networking Research Group (ICNRG). https://irtf.org/icnrg. Retrieved 6 Dec 2020

  14. P. Karn, C. Partridge, Improving round-trip time estimates in reliable transport protocols, in Proceedings of the ACM Workshop on Frontiers in Computer Communications Technology, SIGCOMM ’87 (Association for Computing Machinery, New York, 1987), p. 2–7

    Google Scholar 

  15. Z. Bazzal, A.M. Ahmad, I. El Bitar, M. Rizk, M. Raad, Proposition of an adaptive retransmission timeout for TCP in 802.11 wireless environments. Int. J. Eng. Res. Appl. 7, 64–71 (2017)

    Google Scholar 

  16. M. Larsson, A. Silfver, Signal-aware adaptive timeout in cellular networks: Analysing predictability of link failure in cellular networks based on network conditions (2017). http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138128. Retrieved 6 Dec 2020

  17. V. Jacobson, Congestion avoidance and control. SIGCOMM Comput. Commun. Rev. 18, 314–329 (1988)

    Article  Google Scholar 

  18. S. Floyd, T. Henderson, RFC 2582: The NewReno Modification to TCP’s Fast Recovery Algorithm (1999). Retrieved 6 Dec 2020

    Google Scholar 

  19. C.P. Fu, S.C. Liew, TCP Veno: TCP enhancement for transmission over wireless access networks. IEEE J. Sel. Areas. Commun. 21, 216–228 (2006)

    Google Scholar 

  20. S. Ha, I. Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Operat. Syst. Rev. 42, 64–74 (2008)

    Article  Google Scholar 

  21. D.X. Wei, C. Jin, S.H. Low, S. Hegde, FAST TCP: motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14, 1246–1259 (2006)

    Article  Google Scholar 

  22. C. Claudio, G. Mario, M. Saverio, M. Sanadidi, W. Ren, TCP westwood: end-to-end congestion control for wired/wireless networks. Wireless Netw. 8, 1572–8196 (2002)

    MATH  Google Scholar 

  23. L.A. Grieco, S. Mascolo, Performance evaluation and comparison of westwood+, New Reno, and Vegas TCP congestion control. ACM SIGCOMM Comput. Commun. Rev. 34, 25–38 (2004)

    Article  Google Scholar 

  24. D. Kliazovich, F. Granelli, Cross-layer congestion control in ad hoc wireless networks. Ad Hoc Netw. 4(6), 687–708 (2006)

    Article  Google Scholar 

  25. M.R. Kanagarathinam, S. Singh, I. Sandeep, A. Roy, N. Saxena, D-TCP: dynamic TCP congestion control algorithm for next generation mobile networks, in Proceedings of the IEEE Annual Consumer Communications Networking Conference (CCNC) (2018), pp. 1–6

    Google Scholar 

  26. F. Lu, H. Du, A. Jain, G.M. Voelker, A.C. Snoeren, A. Terzis, CQIC: revisiting cross-layer congestion control for cellular networks, in Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications (2015), pp. 45–50

    Google Scholar 

  27. M.R. Kanagarathinam, S. Singh, I. Sandeep, H. Kim, M.K. Maheshwari, J. Hwang, A. Roy, N. Saxena. NexGen D-TCP: next generation dynamic TCP congestion control algorithm. IEEE Access 8, 164482–164496 (2020)

    Article  Google Scholar 

  28. T. Azzino, M. Drago, M. Polese, A. Zanella, M. Zorzi, X-TCP: a cross layer approach for TCP uplink flows in mmWave networks, in Proceedings of the Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net) (IEEE, Piscataway, 2017), pp. 1–6

    Google Scholar 

  29. T. Zhang, S. Mao, Machine learning for end-to-end congestion control. IEEE Commun. Mag. 58(6), 52–57 (2020)

    Article  Google Scholar 

  30. Achieving > 10 Gbps Network Throughput on Dedicated Host Instances. https://tinyurl.com/y48yrpym. Retrieved 6 Dec 2020

  31. S. Yu, J. Chen, J. Mambretti, F. Yeh, Analysis of CPU pinning and storage configuration in 100 gbps network data transfer, in 2018 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS) (2018), pp. 64–74

    Google Scholar 

  32. G.K. Choudhary, M.R. Kanagarathinam, H. Natarajan, K. Arunachalam, G. Monty, R.S. Lingappa, J.M. Ppallan, S.R. Jayaseelan, C. Bharti, Method and system for handling data path creation in wireless network system. US Patent App. 16/384,040 (2019)

    Google Scholar 

  33. E. Altman, D. Barman, B. Tuffin, M. Vojnovic, Parallel TCP sockets: Simple model, throughput and validation, in INFOCOM, vol. 2006 (2006), pp. 1–12

    Google Scholar 

  34. G.K. Choudhary, M.R. Kanagarathinam, H. Natarajan, K. Arunachalam, S.R. Jayaseelan, G. Sinha, D. Das, Novel multipipe quic protocols to enhance the wireless network performance, in 2020 IEEE Wireless Communications and Networking Conference (WCNC) (2020), pp. 1–7

    Google Scholar 

  35. D. Borman, R. Braden, V. Jacobson, R. Scheffenegger, TCP extensions for high performance, Request for Comments (Proposed Standard) RFC, vol. 1323 (1992)

    Google Scholar 

  36. G. Appenzeller, I. Keslassy, N. McKeown, Sizing router buffers, in Proceedings of the ACM SIGCOMM, pp. 281–292 (2004)

    Google Scholar 

  37. J. Gettys, K. Nichols, Bufferbloat: Dark buffers in the internet. Commun. ACM 55, 57–65 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna M. Sivalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanagarathinam, M.R., Sivalingam, K.M. (2021). Challenges in Transport Layer Design for Terahertz Communication-Based 6G Networks. In: Wu, Y., et al. 6G Mobile Wireless Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-72777-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72777-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72776-5

  • Online ISBN: 978-3-030-72777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics