Skip to main content

A Uniform Shrinkage Prior in Spatiotemporal Poisson Models for Count Data

  • Chapter
  • First Online:
Modern Statistical Methods for Health Research

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

Abstract

We consider default Bayesian inference in a Poisson generalized linear mixed model for spatiotemporal data. Normal random effects are used to model the within-area correlation over time, and spatial effects represented with a proper conditional autoregressive (CAR) model are used to model the between-area correlations. We develop a uniform shrinkage prior (USP) for the variance components of the spatiotemporal random effects. We prove that the proposed USP is proper, and the resulting posterior is proper under the proposed USP, an independent flat prior for each fixed effect, and a uniform prior for a spatial parameter, under suitable conditions. Posterior simulation is implemented and inference made using the OpenBUGS, R2OpenBUGS, and RStan software packages. We illustrate the proposed method by applying it to a leptospirosis count dataset with observations from 17 northern provinces of Thailand across four quarters in 2011 to construct the disease maps. According to the deviance information criterion, the proposed USP for the variance components of the spatiotemporal effects yields a better performance than the conventional inverse gamma priors. A simulation study suggests that the estimated fixed-effect parameters are accurate, based on a relative bias criterion. The leptospirosis data analysis indicates that the top ten estimated leptospirosis morbidity rates (per 100,000 population), ranging from the highest to the lowest, are in Nan (Quarter (Q) 3, 9.8060), Chiang Rai (Q3, 3.1010), Nan (Q2, 3.0190), Nan (Q4, 2.2370), Nan (Q1, 2.2330), Phitsanulok (Q3, 2.2240), Lampang (Q3, 1.7890), Uttaradit (Q3, 1.5230), Phrae (Q3, 1.4720), and Phetchabun (Q3, 1.4380) provinces, respectively.

Krisada Lekdee and Chao Yang co-first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MOPH: Report on leptospirosis (2011). Available Source: http://www.boe.moph.go.th/boedb/surdata/506wk/y55/d43_3155.pdf. Accessed 8 Nov 2012.

  2. Lawson, A.B.: Bayesian disease mapping: hierarchical modeling in spatial epidemiology, 2nd edn. Chapman & Hall/CRC Interdisciplinary Statistics, New York (2013)

    Book  Google Scholar 

  3. Bailey, T.C.: Spatial statistical methods in health. Cae. Saude Ppublica, Rio de Janeiro. 17(5), 1083–1098 (2001)

    Article  Google Scholar 

  4. Kleinschmidt, I.: Spatial statistical analysis, modelling and mapping of malaria in Africa. Ph.D thesis. Faculty of Philosophy and Natural Sciences, University of Basel (2001).

    Google Scholar 

  5. Kazembe, L.N., Kleinschmidt, I., Holtz, T.H., Sharp, B.L.: Spatial analysis and mapping of malaria risk in Malawi using point referenced prevalence of infection data. Int. J. Health Geogr. 5, 41 (2006)

    Article  Google Scholar 

  6. Clayton, D.G., Keldor, J.: Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics. 43, 671–691 (1987)

    Article  Google Scholar 

  7. Basag, J., York, J., Mollie, A.: Bayesian image restoration with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–59 (1991)

    Article  MathSciNet  Google Scholar 

  8. Sun, D., Sutakawa, R.K., Kim, H., He, Z.: Spatiotemporal interaction with disease mapping. Stat. Med. 19, 2015–2035 (2000)

    Article  Google Scholar 

  9. Pettitt, A., Weir, I., Hart, A.: Conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data. Stat. Comput. 12, 353–367 (2002)

    Article  MathSciNet  Google Scholar 

  10. Johnson, G.D.: Smoothing small area maps of prostate cancer incidence in New York State (USA) using fully Bayesian hierarchical modelling. Int. J. Health Geogr. 3, 29 (2004)

    Article  Google Scholar 

  11. Zhu, L., Gorman, D.M., Horel, S.: Hierarchical Bayesian spatial models for alcohol availability, drug “hot spots” and violent crime. Int. J. Health Geogr. 5, 54 (2006)

    Article  Google Scholar 

  12. Zacarias, O.P., Andersson, M.: Spatial and temporal patterns of malaria incidence in Mozambique. Malar. J. 10, 189 (2011)

    Article  Google Scholar 

  13. Lekdee, K., Ingsrisawang, L.: Generalized linear mixed models with spatial random effects for spatiotemporal data: an application to dengue fever mapping. J. Math. Stat. 9, 137–143 (2013)

    Article  Google Scholar 

  14. Daniels, M.J.: A prior for the variance in hierarchical models. Can. J. Stat. 27, 569–580 (1999)

    Article  MathSciNet  Google Scholar 

  15. Natarajan, R., Kass, R.E.: Reference Bayesian methods for generalized linear mixed models. J. Am. Stat. Assoc. 95, 227–237 (2000)

    Article  MathSciNet  Google Scholar 

  16. Gelman, A.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515–533 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Hobert, J., Casella, G.: The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. J. Am. Stat. Assoc. 91, 1461–1473 (1996)

    Article  MathSciNet  Google Scholar 

  18. Li, Y., Lin, X., Müller, P.: Bayesian inference in semiparametric mixed models for longitudinal data. Biometrics. 66(1), 70–78 (2010)

    Article  MathSciNet  Google Scholar 

  19. Eberly, L.E., Carlin, B.P.: Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models. Stat. Med. 19, 2279–2294 (2000)

    Article  Google Scholar 

  20. Spiegelhalter, D., Thomas, A., Best, N., Lunn, D.: WinBUGS Version 1.4 User Manual. MRC Biostatistics Unit. Institute of PublicHealth, London (2004)

    Google Scholar 

  21. WinBUGS: The BUGS Project: DIC. MRC Biostatistics Unit, Cambridge (2012). Available Source: http://dvorak.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml. Accessed 8 Dec 2012.

    Google Scholar 

  22. Li, Y., Müller, P., Lin, X.: Center-adjusted inference for a nonparametric Bayesian random effect distribution. Stat. Sin. 21(3), 1201–1223 (2011)

    Article  MathSciNet  Google Scholar 

  23. Basag, J.: Spatial interaction and the statistical analysis of lattice systems (with Discussion). J. R. Stat. Soc. Ser. B. 36, 192–236 (1974)

    Google Scholar 

  24. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)

    Book  Google Scholar 

  25. Brook, D.: On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems. Biometrika. 51, 481–483 (1964)

    Article  MathSciNet  Google Scholar 

  26. Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press, FL (2004)

    MATH  Google Scholar 

  27. Breslow, N.E., Clayton, D.G.: Approximate Inference in Generalized Linear Mixed Models. J. Am. Stat. Assoc. 88, 9–25 (1993)

    MATH  Google Scholar 

  28. Strawderman, W.E.: Proper Bayes minimax estimators of the multivariate normal mean. Ann. Math. Stat. 42, 385–388 (1971)

    Article  MathSciNet  Google Scholar 

  29. Christiansen, C.L., Morris, C.N.: Hierarchical Poisson regression modeling. J. Am. Stat. Assoc. 92, 618–632 (1997)

    Article  MathSciNet  Google Scholar 

  30. Natarajan, R., McCulloch, C.: Gibbs sampling with diffuse proper priors: a valid approach to data-driven inference? J. Comput. Graph. Stat. 7, 267–277 (1998)

    Google Scholar 

  31. WHO: Leptospirosis. (2013). Available Source: http://www.searo.who.int/about/administration_structure/cds/CDS_leptospirosis-Fact_Sheet.pdf?ua=1. Accessed 9 Feb 2013.

  32. BOE: Leptospirosis (2012). Available Source: http://www.boe.moph.go.th/boedb/surdata/disease.php?dcontent=old&ds=43. Accessed 18 Jan 2013.

  33. TMD: Weather. (2011). Available Source: http://www.tmd.go.th/en/. Accessed 8 Nov 2012.

  34. Bernardinelli, L., Clayton, D.G., Pascutto, C., Montomoli, C., Ghislandi, M., Songini, M.: Bayesian analysis of space-time variation in disease risk. Stat. Med. 14, 2433–2443 (1995)

    Article  Google Scholar 

  35. PHE: Quarterly analyses: mandatory MRSA, MSSA and E. coli Bacteraemia and CDI in England (up to July-September 2013). (2013). Available Source: http://www.hpa.org.uk/webc/hpawebfile/hpaweb_c/1284473407318. Accessed 15 Dec 2013.

  36. Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)

    MATH  Google Scholar 

  37. Thomas, A., Best, N., Lunn, D., Arnold, R., Spiegelhalter, D.: Geobugs User Manual. (2004). Available Source: http://www.openbugs.net/Manuals/GeoBUGS/Manual.html.

  38. SAS: SAS/STAT(R) 9.2 User’s Guide. 2nd ed. (2012). Available Source: https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect007.htm. Accessed 9 Feb 2013.

  39. Ntzoufras, I.: Bayesian modeling using WINBUGS, vol. 698, pp. 282–295. John Wiley & Sons, New York (2011)., Chapter 8.3

    MATH  Google Scholar 

  40. Hoffman, M.D., Gelman, A.: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15(1), 1593–1623 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Moineddin, R., Matheson, F.I., Glazier, R.H.: A simulation study of sample size for multilevel logistic regression models. BMC Med. Res. Methodol. 7, 34 (2007)

    Article  Google Scholar 

  42. Wang, Z., Mohamed, S., Freitas, N.: Adaptive Hamiltonian and Riemann Manifold Monte Carlo. In International Conference on Machine Learning. (2013), pp. 1462–1470.

    Google Scholar 

  43. Robert, C.P., Elvira, V., Tawn, N., Wu, C.: Accelerating MCMC algorithms. Wiley Interdiscip. Rev. Comput. Statis. 10(5), e1435 (2018)

    MathSciNet  Google Scholar 

  44. Kleinman, K.P., Ibrahim, J.G.: A semi-parametric Bayesian approach to generalized linear mixed models. Stat. Med. 17(22), 2579–2596 (1998)

    Article  Google Scholar 

  45. Yang, M., Dunson, D.B.: Semiparametric Bayes hierarchical models with mean and variance constraints. Computat. Statis. Data Anal. 54, 2172–2186 (2010)

    Article  MathSciNet  Google Scholar 

  46. Jara, A., Hanson, T., Quintana, F.A., Müller, P., Rosner, G.L.: DPpackage: Bayesian Semi- and Nonparametric Modeling in R. J. Stat. Softw. 40, 5 (2011)

    Article  Google Scholar 

  47. Neelon, B.: Bayesian Zero-inflated negative binomial regression based on Pólya-gamma mixtures. Bayesian Anal. 14(3), 829–855 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lekdee, K., Yang, C., Ingsrisawang, L., Li, Y. (2021). A Uniform Shrinkage Prior in Spatiotemporal Poisson Models for Count Data. In: Zhao, Y., Chen, (.DG. (eds) Modern Statistical Methods for Health Research. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-72437-5_4

Download citation

Publish with us

Policies and ethics