Skip to main content

Obstacle Problems Generated by the Estimates of Square Function

  • Conference paper
  • First Online:
Geometric Aspects of Harmonic Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 45))

Abstract

In this note we give the formula for the Bellman function associated with the problem considered by B. Davis (Duke Math J 43:697–704, 1976) in 1976. In this article the estimates of the type ∥Sfp ≤ C pfp, p ≥ 2, were considered for the dyadic square function operator S, and Davis found the sharp values of constants C p. However, along with the sharp constants one can consider a more subtle characteristic of the above estimate. This quantity is called the Bellman function of the problem. It has never been proved that the confluent hypergeometric function from Davis’ paper (second page) gives us this Bellman function. Here we fill out this gap by finding the exact Bellman function of the unweighted L p estimate for the dyadic square function operator S. We cast the proofs in the language of obstacle problems. For the sake of comparison, we also find the Bellman function of weak (1, 1) estimate of S. This formula was suggested by Bollobas (Math Proc Camb Phil Soc 87:377–382, 1980) and proved by Osekowski (Statist Probab Lett 79(13):1536–1538, 2009), so it is not new, but we like to emphasize the common approach to those two Bellman function descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barthe, F., Maurey, B.: Some remarks on isoperimetry of Gaussian type. Annales de l’Institut Henri Poincare (B) Probab. Stat. 36(4), 419–434 (2000)

    Google Scholar 

  2. Bollobás, B.: Martingale Inequalities. Math. Proc. Camb. Phil. Soc. 87, 377–382 (1980)

    Article  MathSciNet  Google Scholar 

  3. Buckley, S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340(1), 253–272 (1993)

    Article  MathSciNet  Google Scholar 

  4. Burkholder, D.: A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probab. 9, 997–1011 (1981)

    Article  MathSciNet  Google Scholar 

  5. Burkholder, D.: Boundary value problems and sharp estimates for the martingale transforms. Ann. Prob. 12, 647–702 (1984)

    Article  Google Scholar 

  6. Burkholder, D.: Martingales and Fourier analysis in Banach spaces. In: Probability and Analysis (Varenna, 1985) Lecture Notes in Mathematical, vol. 1206, pp. 61–108 (1986)

    Google Scholar 

  7. Burkholder, D.: An extension of classical martingale inequality. In: Chao, J.-A., Woyczyński, W.A. (eds.) Probability Theory and Harmonic Analysis. Marcel Dekker, New York (1986)

    Google Scholar 

  8. Burkholder, D.: Sharp inequalities for martingales and stochastic integrals. In: Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987), Astérisque No. 157–158 (1988), pp. 75–94.

    Google Scholar 

  9. Burkholder, D.: A proof of the Pelczynski’s conjecture for the Haar system. Studia Math. 91, 79–83 (1988)

    Article  MathSciNet  Google Scholar 

  10. Burkholder, D.: Differential subordination of harmonic functions and martingales (El Escorial 1987). In: Lecture Notes in Mathematical, vol. 1384, pp. 1–23 (1989)

    Google Scholar 

  11. Burkholder, D.: Explorations of martingale theory and its applications. Lecture Notes in Math. 1464, 1–66 (1991)

    Article  MathSciNet  Google Scholar 

  12. Burkholder, D.: Strong differential subordination and stochastic integration. Ann. Prob. 22, 995–1025 (1994)

    Article  MathSciNet  Google Scholar 

  13. Burkholder, D.: Martingales and Singular Integrals in Banach spaces. In: Handbook of the Geometry of Banach Spaces, vol. 1(Ch. 6), pp. 233–269 (2001)

    Google Scholar 

  14. Burkholder, D.L.: Martingale transforms. Ann. Math. Statist. 37, 1494–1504 (1966)

    Article  MathSciNet  Google Scholar 

  15. Burkholder, D.L., Gundy, R.F.: Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249–304 (1970)

    Article  MathSciNet  Google Scholar 

  16. Davis, B.: On the L p norms of stochastic integrals and other martingales. Duke Math. J. 43, 697–704 (1976)

    Article  MathSciNet  Google Scholar 

  17. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions (1992)

    Google Scholar 

  18. Hall, R.R.: On a conjecture of Littlewood. Math. Proc. Cambridge Philos. Soc. 78, 443–445 (1975)

    Article  MathSciNet  Google Scholar 

  19. Holmes, I., Ivanisvili, P., Volberg, A.: The Sharp Constant in the Weak (1,1) Inequality for the Square Function: a new proof, Revista Mat. Iberoam. 36(3), 741–770 (2020)

    Article  MathSciNet  Google Scholar 

  20. Marcinkiewicz, J.: Quelque théorèmes sur les séries orthogonales. Ann. Soc. Polon. Math. 16, 84–96 (1937). (pages 307–318 of the Collected Papers)

    Google Scholar 

  21. Millar, P.W.: Martingale integrals. Trans. Am. Math. Soc. 133, 145–166 (1968)

    Article  MathSciNet  Google Scholar 

  22. Nazarov, F., Vasyunin, V., Volberg, A.L.: On Bellman function associated with Chang–Wilson–Wolff theorem. Algebra & Analysis, vol. 33, No. 4, pp. 66–106 (2021)

    Google Scholar 

  23. Novikov, A.A.: On stopping times for Wiener processes. Theory Probab. Appl. 16, 449–456 (1971)

    Article  Google Scholar 

  24. Osekowski, A.: On the best constant in the weak type inequality for the square function of a conditionally symmetric martingale. Statist. Probab. Lett. 79(13), 1536–1538 (2009)

    Article  MathSciNet  Google Scholar 

  25. Osekowski, A.: Sharp martingale and semimartingale inequalities. In: Monografie Matematyczne, vol. 72. Springer, Basel (2012)

    Google Scholar 

  26. Osekowski, A.: Weighted square function inequalities. Publ. Mat. 62, 75–94 (2018)

    Article  MathSciNet  Google Scholar 

  27. Shepp, L.A.: A first passage problem for the Wiener process. Ann. Math. Statist. 38, 1912–1914 (1967)

    Article  MathSciNet  Google Scholar 

  28. Szarek, S.J.: On the best constants in the Khintchine inequality. Studia Math. 18, 197–208 (1976)

    Article  Google Scholar 

  29. Vasyunin, V., Volberg, A.: Bellman Function Technique in Harmonic Analysis (Cambridge University Press, Cambridge, 2020), pp. 1–460. https://doi.org/10.1017/9781108764469

    Book  Google Scholar 

  30. Wang, G.: Some sharp inequalities for conditionally symmetric martingales, Ph.D. Thesis. University of Illinois, Urbana-Champaign (1989)

    Google Scholar 

  31. Wang, G.: Sharp square function inequalities for conditionally symmetric martingales. Trans. Am. Math. Soc. 328(1), 393–419 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I. Holmes is supported by National Science Foundation as an NSF Postdoc under Award No.1606270, A. Volberg is partially supported by the NSF DMS-1600065. This paper is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 A. Volberg was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring and Fall 2017 semester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Volberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holmes, I., Volberg, A. (2021). Obstacle Problems Generated by the Estimates of Square Function. In: Ciatti, P., Martini, A. (eds) Geometric Aspects of Harmonic Analysis. Springer INdAM Series, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-72058-2_12

Download citation

Publish with us

Policies and ethics