Skip to main content

On the Restriction of Laplace–Beltrami Eigenfunctions and Cantor-Type Sets

  • Conference paper
  • First Online:
Geometric Aspects of Harmonic Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 45))

  • 732 Accesses

Abstract

Let (M, g) denote a compact Riemannian manifold without boundary. This article is an announcement of Lebesgue norm estimates of Laplace–Beltrami eigenfunctions of M when restricted to certain fractal subsets Γ of M. The proofs in their entirety appear in Eswarathasan and Pramanik (Restriction of Laplace–Beltrami eigenfunctions to random Cantor-type sets on manifolds, 2019). The sets Γ that we consider are random and of Cantor-type. For large Lebesgue exponents p, our estimates give a natural generalization of L p bounds previously obtained in Hörmander (Acta Math 121: 193–218, 1968; Ark Math 11:1–11, 1971; Sogge J Funct Anal 77:123–138, 1988; Burq et al. Duke Math J 138(3):445–487, 2007). The estimates are shown to be sharp in this range. The novelty of our approach is the combination of techniques from geometric measure theory with well-known tools from harmonic and microlocal analysis. Random Cantor sets have appeared in a variety of contexts before, specifically in fractal geometry, multiscale analysis, additive combinatorics and fractal percolation Kahane and Peyriere (Adv Math 22(2):131–145, 1976; Laba and Pramanik, Geom Funct Anal 19:429–456, 2009; Laba and Pramanik, Duke Math J 158(3):347–411, 2011; Shmerkin and Suomala, Birkhäuser/Springer, Cham, 2017; Shmerkin and Suomala, Mem Am Math Soc 251:1195, 2018). They play a significant role in the study of optimal decay rates of Fourier transforms of measures, and in the identification of sets with arithmetic and geometric structures. Our methods, though inspired by earlier work, are not Fourier-analytic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anantharaman, N.: Entropy and the localization of eigenfunctions. Ann. Math. (2) 168(2), 435–475 (2008)

    Google Scholar 

  2. Blair, M., Sogge, C.: Logarithmic improvements in L p-norms for eigenfunctions at the critical exponent in the presence of nonpositive curvature (2018). Preprint. arxiv.org/abs/1706.06704

    Google Scholar 

  3. Bourgain, J.: Geodesic restriction and L p-estimates for eigenfunctions on Riemannian surfaces. Linear and Complex Analysis, pp. 27–35. Amer. Math. Soc. Transl. Ser. 2, 226, Adv. Math. Sci., 63 (2009)

    Google Scholar 

  4. Bourgain, J., Dyatlov, S.: Fourier dimension and spectral gaps for hyperbolic surfaces. Geom. Funct. Anal. 27, 744–771 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J., Dyatlov, S.: Spectral gaps without the pressure condition. Ann. Math. 187(3), 824–867 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J., Rudnick, Z.: Restriction of toral eigenfunctions to hypersurfaces and nodal sets. Geom. Funct. Anal. 22, 878–937 (2012)

    Article  MathSciNet  Google Scholar 

  7. Burq, N., Gérard, P., Tzetkov, N.: Restrictions of the Laplace–Beltrami eigenfunctions to submanifolds. Duke Math. J. 138(3), 445–487 (2007)

    Article  MathSciNet  Google Scholar 

  8. Colin de Verdière, Y.: Ergodicité et fonctions propres du Laplacien. Commun. Math. Phys. 102, 497–502 (1985)

    Google Scholar 

  9. Chen, X., Sogge, C.: A few endpoint geodesic restriction estimates for eigenfunctions. Commun. Math. Phys. 329, 435–459 (2014)

    Article  MathSciNet  Google Scholar 

  10. Eswarathasan, S., Pramanik, M.: Restriction of Laplace–Beltrami eigenfunctions to random Cantor-type sets on manifolds (2019). Pre-print

    Google Scholar 

  11. Gérard, P., Leichtnam, É.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71, 559–607 (1993)

    Article  MathSciNet  Google Scholar 

  12. Hassell, A., Tacy, M.: Semiclassical L p estimates of quasimodes on curved hypersurfaces. J. Geom. Anal. 22, 74–89 (2012)

    Article  MathSciNet  Google Scholar 

  13. Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys. 109, 313–326 (1987)

    Article  Google Scholar 

  14. Hörmander, L.: Spectral function of an elliptic operator. Acta Math. 121, 193–218 (1968)

    Article  MathSciNet  Google Scholar 

  15. Hörmander, L.: Oscillatory integrals and multipliers on FL p. Ark. Math. 11, 1–11 (1971)

    Article  MathSciNet  Google Scholar 

  16. Hu, R.: L p norm estimates of eigenfunctions restricted to submanifolds. Forum Math. 21, 1021–1052 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kahane, J.-P., Peyriere, J.: Sur certaines martingales de Benoît Mandelbrot. Adv. Math. 22(2), 131–145 (1976)

    Article  Google Scholar 

  18. Koch, H., Tataru, D., Zworski, M.: Semiclassical L p estimates. Ann. Henri Poincare 5, 885–916 (2007)

    Article  MathSciNet  Google Scholar 

  19. Laba, I., Pramanik, M.: Arithmetic progressions in sets of fractal dimensions. Geom. Funct. Anal. 19, 429–456 (2009)

    Article  MathSciNet  Google Scholar 

  20. Laba, I., Pramanik, M.: Maximal operators and differentiation theorems for sparse sets. Duke Math. J. 158(3), 347–411 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. (2) 163, 165–219 (2006)

    Google Scholar 

  22. Naud, F.: Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. l’ENS 4(38), 116–153 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Reznikov, A.: Norms of geodesic restrictions for eigenfunctions on hyperbolic surfaces and representation theory (2010). unpublished update to a work from 2005, arxiv.org/abs/math/0403437v3

    Google Scholar 

  24. Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994)

    Article  MathSciNet  Google Scholar 

  25. Sarnak, P.: Arithmetic quantum chaos. In: The Schur lectures (Tel Aviv, 1992), Israel Math. Conf. Proc., vol. 8, pp. 183–236. Bar-Ilan Univ., Ramat Gan (1995)

    Google Scholar 

  26. Shmerkin, P., Suomala, V.: A Class of Random Cantor Measures, with Applications. Recent Developments in Fractals and Related Fields. Trends Math., pp. 233–260. Birkhäuser/Springer, Cham (2017)

    Google Scholar 

  27. Shmerkin, P., Suomala, V.: Spatially independent martingales, intersections, and applications. Mem. Am. Math. Soc. 251, 1195 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Shnirelman, A.I.: Ergodic properties of eigenfunctions (in Russian). Uspekhi Mat. Nauk 29(6), 181–182 (1974)

    MathSciNet  Google Scholar 

  29. Sogge, C.: Oscillatory integrals and spherical harmonics. Duke Math. J. 53, 43–65 (1986)

    Article  MathSciNet  Google Scholar 

  30. Sogge, C.: Concerning the L p norms of spectral clusters of second-order elliptic operators on compact manifolds. J. Funct. Anal. 77, 123–138 (1988)

    Article  MathSciNet  Google Scholar 

  31. Sogge, C.: Fourier Integrals in Classical Analysis. Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge (1993)

    Google Scholar 

  32. Tacy, M.: Semiclassical L p estimates of quasimodes on submanifolds. Commun. PDE 35(8), 1538–1562 (2010)

    Article  MathSciNet  Google Scholar 

  33. Tomas, P.: A restriction theorem for the Fourier transform. Bull. Am. Math. Soc. 81, 477–478 (1975)

    Article  MathSciNet  Google Scholar 

  34. Yung, P.: Spectral projection theorems on compact manifolds. Lecture notes, available under “Notes/Slides”. https://www.math.cuhk.edu.hk/~plyung/Sogge.pdf

  35. Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)

    Article  MathSciNet  Google Scholar 

  36. Zelditch, S., Zworski, M.: Ergodicity of eigenfunctions for ergodic billiards. Commun. Math. Phys. 175, 673–682 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malabika Pramanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eswarathasan, S., Pramanik, M. (2021). On the Restriction of Laplace–Beltrami Eigenfunctions and Cantor-Type Sets. In: Ciatti, P., Martini, A. (eds) Geometric Aspects of Harmonic Analysis. Springer INdAM Series, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-72058-2_10

Download citation

Publish with us

Policies and ethics