Skip to main content

On the Hausdorff Dimension of Graphs of Prevalent Continuous Functions on Compact Sets

  • Chapter
  • First Online:
Further Developments in Fractals and Related Fields

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let K be a compact set in d with positive Hausdorff dimension. Using a fractional Brownian motion, we prove that in a prevalent set of continuous functions on K, the Hausdorff dimension of the graph is equal to \(\dim _{\mathcal{H}}(K) + 1\). This is the largest possible value. This result generalizes a previous work due to J.M. Fraser and J.T. Hyde which was exposed in the conference Fractals and Related Fields II. The case of α-Hölderian functions is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balka, R., Buczolich, Z., Elekes, M.: Topological Hausdorff dimension and level sets of generic continuous functions on fractals. arXiv:1108.5578 (2011)

    Google Scholar 

  2. Bayart, F., Heurteaux, Y.: Multifractal analysis of the divergence of Fourier series: the extreme cases. arXiv:1110:5478, submitted (2011)

    Google Scholar 

  3. Christensen, J.P.R.: On sets of Haar measure zero in Abelian Polish groups. Israel J. Math. 13, 255–260 (1972)

    Article  MathSciNet  Google Scholar 

  4. Clausel, M., Nicolay, S.: Some prevalent results about strongly monoHölder functions. Nonlinearity 23, 2101–2116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Falconer, K.J.: Fractal geometry: Mathematical foundations and applications. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  6. Falconer, K.J., Fraser, J.M.: The horizon problem for prevalent surfaces, Math. Proc. Cambridge Philos. Soc. 151, 355–372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fraser, J.M., Hyde, J.T.: The Hausdorff dimension of graphs of prevalent continuous functions. arXiv:1104.2206 Real Anal. Exchange 37, 333–352 (2012)

    Google Scholar 

  8. Fraysse, A, Jaffard S.: How smooth is almost every function in a Sobolev space?. Rev. Mat. Iboamericana 22, 663–682 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fraysse, A., Jaffard, S., Kahane, J.P.: Quelques propriétés génériques en analyse. (French) [Some generic properties in analysis]. C. R. Math. Acad. Sci. Paris 340, 645–651 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Gruslys, V., Jonus̃as, J., Mijovic̀, V., Ng, O., Olsen, L., Petrykiewicz I.: Dimensions of prevalent continuous functions. Monash. Math. 166, 153–180 (2012)

    Google Scholar 

  11. Humke, P.D., Petruska, G.: The packing dimension of a typical continuous function is 2. Bull. Am. Math. Soc. (N.S.) 27, 345–358 (1988–89)

    Google Scholar 

  12. Hunt, B.R.: The Hausdorff dimension of graphs of Weierstrass functions. Proc. Am. Math. Soc. 126, 791–800 (1998)

    Article  MATH  Google Scholar 

  13. Hyde, J.T., Laschos, V., Olsen, L., Petrykiewicz, I., Shaw, A.: On the box dimensions of graphs of typical functions. J. Math. Anal. Appl. 391, 567–581 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mauldin, R.D., Williams, S.C.: On the Hausdorff dimension of some graphs. Trans. Am. Math. Soc. 298, 793–803 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. McClure, M.: The prevalent dimension of graphs, Real Anal. Exchange 23, 241–246 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Olsen, L.: Fractal and multifractal dimensions of prevalent measures. Indiana Univ. Math. J. 59, 661–690 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shaw, A.: Prevalence, M. Math Dissertation, University of St. Andrews (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bayart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bayart, F., Heurteaux, Y. (2013). On the Hausdorff Dimension of Graphs of Prevalent Continuous Functions on Compact Sets. In: Barral, J., Seuret, S. (eds) Further Developments in Fractals and Related Fields. Trends in Mathematics. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8400-6_2

Download citation

Publish with us

Policies and ethics