Skip to main content

Using an Eye-Tracker to Study Students’ Attention Allocation When Solving a Context-Based Problem on the Sublimation of Water

  • Chapter
  • First Online:
Applying Bio-Measurements Methodologies in Science Education Research

Abstract

Science knowledge is of utmost importance for understanding the processes and phenomena around us. Appropriate basic education in science enables critically evaluating the deluge of information from various and diverse media. The learning content of science subjects is perceived as abstract and difficult to understand and learn. One of the challenges of modern science education is learning to understand science concepts, phenomena and processes and to apply them when solving authentic tasks (Wu et al., 2001). The way students process information in science subjects can be supported in solving problems by observing a person with an eye tracker, which is the subject of our research, the theoretical background of which includes the triple nature of chemical concepts, the understanding of submicroscopic representations, and the properties of the eye-tracker method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Avramiotis, S., & Tsaparlis, G. (2013). Using computer simulations in chemistry problem solving. Chemistry Education Research and Practice, 14(3), 297–311.

    Article  Google Scholar 

  • Bačnik, A., Bukovec, N., Poberžnik, A., Požek Novak, T., Keuc Z., Popič, H., & Vrtačnik M. (2009). Učni načrt, Program srednja šola, Kemija: gimnazija: klasična, strokovna gimnazija [Curriculum, program of secondary school, chemistry: gymnasium: classical, professional gymnasium]. Ljubljana: National Education Institute Slovenia.

    Google Scholar 

  • Bačnik, A., Bukovec, N., Vrtačnik, M., Poberžnik, A., Križaj, M., Stefanovik, V., Sotlar, K., Dražumerič, S., & Preskar, S. (2011). Učni načrt, Program osnovna šola, Kemija [Curriculum, program of primary school, chemistry]. Ljubljana: National Education Institute Slovenia.

    Google Scholar 

  • Bassok, M. (1990). Transfer of domain-specific problem solving procedures. Journal of Experimental Psychology. Learning, Memory, and Cognition, 16(3), 522–533.

    Article  Google Scholar 

  • Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. Handbook of psychophysiology (2nd ed., pp. 142–162). New York: Cambridge University Press.

    Google Scholar 

  • Bunce, D. M., & Gabel, D. (2002). Differential effects in the achievement of males and females of teaching the particulate nature of chemistry. Journal of Research in Science Teaching, 39(10), 911–972.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cullipher, S., & VandenPlas, J. R. (2018). Using fixations to measure attention in eye tracking for the chemistry education researcher. In J. R. VadenPlas, S. J. R. Hansen, & S. Cullipher (Eds.), Eye tracking for the chemistry education researcher (pp. 53–72). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Devetak, I. (2012). Zagotavljanje kakovostnega znanja naravoslovja s pomočjo submikroreprezentacij, Analiza ključnih dejavnikov zagotavljanja kakovosti znanja v vzgojno – izobraževalnem sistemu [The analysis of the key factors in ensuring the quality of knowledge in educational system]. Ljubljana: Faculty of Education, University of Ljubljana.

    Google Scholar 

  • Devetak, I., Drofenik Lorber, E., Juriševič, M., & Glažar, S. A. (2009). Comparing Slovenian year 8 and year 9 elementary school pupils’ knowledge of electrolyte chemistry and their intrinsic motivation. Chemistry Education Research and Practice, 10(4), 281–290.

    Article  Google Scholar 

  • Devetak, I., & Glažar, S. A. (2010). The influence of 16-year-old students’ gender, mental abilities, and motivation on their reading and drawing submicrorepresentations achievements. International Journal of Science Education, 32(12), 1561–1593.

    Article  Google Scholar 

  • Devetak, I., Vogrinc, J., & Glažar, S. A. (2009). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research in Science Education, 39(2), 157–179.

    Article  Google Scholar 

  • Ferk Savec, V., Hrast, Š., Devetak, I., & Torkar, G. (2016). Beyond the use of an explanatory key accompanying submicroscopic representations. Acta Chimica Slovenica, 63(4), 864–873.

    Article  Google Scholar 

  • Gegenfurtner, A., Lehtinen, E., & Saljo, R. (2011). Expertise differences in the comprehension of visualisations: A meta-analysis of the eye-tracking research in professional domains. Educational Psychology Review, 23(2), 523–552.

    Article  Google Scholar 

  • Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements: Methods and constructs. International Journal of Industrial Ergonomics, 24(2), 631–645.

    Article  Google Scholar 

  • Green, H. J., Lemaire, P., & Dufau, S. (2007). Eye movement correlates of younger and older adults’ strategies addition. Acta Psychologica, 125(12), 257–278.

    Article  Google Scholar 

  • Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (Eds.). (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford: Oxford University Press.

    Google Scholar 

  • Hyönä, J., Lorch, R. F., & Kaakinen, J. K. (2002). Individual differences in reading to summarise expository text: Evidence from eye fixation patterns. Journal of Education Psychology, 94(1), 44–55.

    Article  Google Scholar 

  • Hyönä, J., Lorch, R. F., & Rinck, M. (2003). Eye movement measures to study global text processing. In The mind’s eye, cognitive and applied aspects of eye movement research (pp. 313–334). Elsevier: North Holland.

    Google Scholar 

  • Johnstone, A. H. (1982). Macro- and micro-chemistry. School Science Review, 64(227), 377–379.

    Google Scholar 

  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83.

    Article  Google Scholar 

  • Johnstone, A. H. (2001). Teaching of chemistry-logical or psychological? Chemical Education: Research and Practice in Europe, 1(1), 9–15.

    Google Scholar 

  • Johnstone, A. H., & El-Banna, H. (1986). Capacities, demands and processes—A predictive model for science education. Education in Chemistry, 23(3), 80–84.

    Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–354.

    Article  Google Scholar 

  • Just, M. A., Carpenter, P. A., & Miyake, A. (2003). Neuroindices of cognitive workload: Neuroimaging, pupillometric and event-related potential studies of brain work. Theoretical Issues in Ergonomics Science, 4(1), 56–88.

    Article  Google Scholar 

  • Kelly, R. M., & Jones, L. L. (2008). Investigating students’ ability to transfer ideas learned from molecular animations of the dissolution process. Journal of Chemical Education, 85(2), 303–309.

    Article  Google Scholar 

  • Kind, V. (2004). Beyond appearances: Students’ misconceptions about basic chemical ideas (2nd ed.). Durham: Durham University, School of Education.

    Google Scholar 

  • Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21(3), 113–140.

    Article  Google Scholar 

  • Levy, S. T., & Wilinsky, U. (2009). Crossing levels and representations: The connected chemistry (CC1) curriculum. Journal of Science Education and Technology, 18(3), 224–242.

    Article  Google Scholar 

  • Löfgren, L., & Hellden, G. (2009). A longitudinal study showing how students use a molecule concept when explaining everyday situations. International Journal of Science Education, 31(4), 1631–1655.

    Article  Google Scholar 

  • Mahaffy, P. (2004). The future shape of chemistry education. Chemistry Education Research and Practice, 5(3), 229–245.

    Article  Google Scholar 

  • Pallant, J. (2011). SPSS survival manual: A step by step guide to data analysis using SPSS (4th ed.). Crows Nest: Allen & Unwin.

    Google Scholar 

  • Parchmann, I., Blonder, R., & Broman, K. (2017). Context-based chemistry learning: The relevance of chemistry for citizenship and responsible research and innovation (RRI). In L. Leite, L. Dourado, A. S. Afonso, & S. Morgado (Eds.), Contextualising teaching to improve learning the case of science and geography (pp. 25–39). New York: Nova Science Publishers.

    Google Scholar 

  • Pavlin, J., Glažar, S. A., Slapničar, M., & Devetak, I. (2019). The impact of studentsʼ educational background, interest in learning, formal reasoning and visualisation abilities on gas context-based exercises achievements with submicro-animations. Chemistry Education Research and Practice, 20(3), 633–649.

    Article  Google Scholar 

  • Phillips, L. M., Norris, S. P., & Macnab, J. S. (2010). Visualisation in mathematics, reading and science education. Dordrecht: Springer.

    Book  Google Scholar 

  • Planinšič, G., Belina, R., Kukman, I., & Cvahte, M. (2009). Učni načrt, Program srednja šola, Fizika: gimnazija: klasična, strokovna gimnazija [Curriculum, Program of secondary school, physics: Gymnasium: Classical, professional gymnasium]. Ljubljana: National Education Institute Slovenia.

    Google Scholar 

  • Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psyhology, 62(8), 1457–1506.

    Article  Google Scholar 

  • Russell, J., Kozma, R., Jones, T., Wykoff, J., Marx, N., & Davis, J. (1997). Use of simultaneous-synchronised macroscopic, microscopic, and symbolic representations to enhance the teaching and learning of chemical concepts. Journal of Chemical Education, 74(3), 330–334.

    Article  Google Scholar 

  • Schultheis, H., & Jameson, A. (2004). Assessing cognitive load in adaptive hypermedia systems: Physiological and behavioral methods. In P. M. E. De Bra & W. Nejdl (Eds.), Adaptive hypermedia and adaptive web-based systems (pp. 225–234). Berlin: Springer.

    Chapter  Google Scholar 

  • Slapničar, M., Devetak, I., Glažar, S. A., & Pavlin, J. (2017). Identification of the understanding of the states of water and air among Slovenian students aged 12, 14 and 16 years through solving authentic exercises. Journal of Baltic Science Education, 16(3), 308–323.

    Google Scholar 

  • Slapničar, M., Tompa, V., Glažar, S. A., & Devetak, I. (2018). Fourteen-year-old students’ misconceptions regarding the sub-micro and symbolic levels of specific chemical concepts. Journal of Baltic Science Education, 17(4), 620–632.

    Article  Google Scholar 

  • Taber, K. S. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156–168.

    Article  Google Scholar 

  • Tien, L. T., Teichert, M. A., & Rickey, D. (2007). Effectiveness of a MORE laboratory module in prompting students to revise their molecular-level ideas about solutions. Journal of Chemical Education, 84(1), 175–180.

    Article  Google Scholar 

  • Torkar, G., Veldin, M., Glažar, S. A., & Podlesek, A. (2018). Why do plants wilt? Investigating students’ understanding of water balance in plants with external representations at the macroscopic and submicroscopic levels. Eurasia Journal of Mathematic Science Technology & Education, 14(6), 2265–2276.

    Google Scholar 

  • Tsai, M., Hou, H., Lai, M., Liu, W., & Yang, F. (2012). Visual attention for solving multiple-choice science problem: An eye-tracking analysis. Computer Education, 58(4), 375–385.

    Google Scholar 

  • Verovnik, I., Bajc, J., Beznec, B., Božič, S., Brdar, U. V., Cvahte, M., Gerlič, I., & Munih S. (2011). Učni načrt, Program osnovna šola, Fizika [Curriculum. Program of primary school. Physics]. Ljubljana: national education institute Slovenia.

    Google Scholar 

  • West, J. M., Haake, A. R., Rozanski, E. P., & Karn, K. S. (2006). EyePatterns: Software for identifying patterns and similarities across fixation sequences. Paper presented at the Proceedings of the 2006 symposium on eye tracking research & applications (pp. 149–154). New York: ACM Press.

    Google Scholar 

  • Wu, H. K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualisation tool in the classroom. Journal of Research in Science Teaching, 38(7), 821–832.

    Article  Google Scholar 

  • Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in learning. Science Education, 88(3), 465–492.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the project Explaining Effective and Efficient Problem Solving of the Triplet Relationship in Science Concepts Representations (J5-6814), financed by the Slovenian Research Agency (ARRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miha Slapničar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slapničar, M., Tompa, V., Devetak, I., Glažar, S.A., Pavlin, J. (2021). Using an Eye-Tracker to Study Students’ Attention Allocation When Solving a Context-Based Problem on the Sublimation of Water. In: Devetak, I., Glažar, S.A. (eds) Applying Bio-Measurements Methodologies in Science Education Research. Springer, Cham. https://doi.org/10.1007/978-3-030-71535-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71535-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71534-2

  • Online ISBN: 978-3-030-71535-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics