Skip to main content

Global Polarization Effect and Spin-Orbit Coupling in Strong Interaction

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

Abstract

In non-central high energy heavy ion collisions, the colliding system posses a huge orbital angular momentum in the direction opposite to the normal of the reaction plane. Due to the spin-orbit coupling in strong interaction, such huge orbital angular momentum leads to the polarization of quarks and antiquarks in the same direction. This effect, known as the global polarization effect, has been recently observed by STAR Collaboration at RHIC that confirms the theoretical prediction made more than ten years ago. The discovery has attracted much attention to the study of spin effects in heavy ion collision. It opens a new window to study properties of QGP and a new direction in high energy heavy ion physics—Spin Physics in Heavy Ion Collisions. In this chapter, we review the original ideas and calculations that lead to the predictions. We emphasize the role played by spin-orbit coupling in high energy spin physics and discuss the new opportunities and challenges in this connection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamczyk, L., et al.: STAR Collaboration. Nature 548, 62 (2017)

    Google Scholar 

  2. Liang, Z.T., Wang, X.N.: Phys. Rev. Lett. 94, 102301 (2005) Erratum: [Phys. Rev. Lett. 96, 039901 (2006)]

    Google Scholar 

  3. Liang, Z.T., Wang, X.N.: Phys. Lett. B 629, 20 (2005)

    Article  ADS  Google Scholar 

  4. Gao, J.H., Chen, S.W., Deng, W.T., Liang, Z.T., Wang, Q., Wang, X.N.: Phys. Rev. C 77 (2008)

    Google Scholar 

  5. Baum, G., et al.: SLAC E80. Phys. Rev. Lett. 45, 2000 (1980)

    Article  ADS  Google Scholar 

  6. Baum, G., et al.: SLAC E130. Phys. Rev. Lett. 51, 1135 (1983)

    Article  ADS  Google Scholar 

  7. Ashman, J., et al.: European Muon Collaboration. Phys. Lett. B 206, 364 (1988)

    Article  ADS  Google Scholar 

  8. Ashman, J., et al.: European Muon Collaboration. Nucl. Phys. B 328, 1 (1989)

    Article  ADS  Google Scholar 

  9. For a recent review see e.g., C. A. Aidala, S. D. Bass, D. Hasch and G. K. Mallot, Rev. Mod. Phys. 85, 655 (2013)

    Google Scholar 

  10. Klem, R.D., et al.: Phys. Rev. Lett. 36, 929 (1976)

    Article  ADS  Google Scholar 

  11. Dragoset, W.H., et al.: Phys. Rev. D 18, 3939 (1978)

    Article  ADS  Google Scholar 

  12. Adams, D.L., et al.: FNAL-E704 Collaboration. Phys. Lett. B 264, 462 (1991)

    Article  ADS  Google Scholar 

  13. For a short review, see e.g. Z. t. Liang and C. Boros, Int. J. Mod. Phys. A 15, 927 (2000)

    Google Scholar 

  14. Lesnik, A., et al.: Phys. Rev. Lett. 35, 770 (1975)

    Article  ADS  Google Scholar 

  15. Bunce, G., et al.: Phys. Rev. Lett. 36, 1113 (1976)

    Article  ADS  Google Scholar 

  16. Bensinger, J., et al.: Phys. Rev. Lett. 50, 313 (1983)

    Article  ADS  Google Scholar 

  17. Gourlay, S.A., et al.: Phys. Rev. Lett. 56, 2244 (1986)

    Article  ADS  Google Scholar 

  18. For a recent review, see e.g., A. D. Krisch, Eur. Phys. J. A 31, 417 (2007)

    Google Scholar 

  19. O’Fallon, J.R., et al.: Phys. Rev. Lett. 39, 733 (1977)

    Article  ADS  Google Scholar 

  20. Crabb, D.G., et al.: Phys. Rev. Lett. 41, 1257 (1978)

    Article  ADS  Google Scholar 

  21. Cameron, P.R., et al.: Phys. Rev. D 32, 3070 (1985)

    Article  ADS  Google Scholar 

  22. Bjorken, J.D., Sci, N.A.T.O.: Ser. B 197, 1 (1987)

    Google Scholar 

  23. Gyulassy, M., McLerran, L.: Nucl. Phys. A 750, 30 (2005)

    Article  ADS  Google Scholar 

  24. Adams, J., et al.: STAR Collaboration. Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  25. Liang, Z.T., Lisa, M.A., Wang, X.N.: Nucl. Phys. News 30(2), 10–16 (2020)

    Article  Google Scholar 

  26. Ackermann, K.H., et al.: STAR Collaboration. Phys. Rev. Lett. 86, 402 (2001)

    Article  ADS  Google Scholar 

  27. Adams, J., et al.: Phys. Rev. Lett. 92 (2004)

    Google Scholar 

  28. Cederwall, B., et al.: Phys. Rev. Lett. 72, 3150 (1994)

    Article  ADS  Google Scholar 

  29. Back, B.B. et al.: [PHOBOS Collaboration], arXiv:nucl-ex/0301017; Nouicer, R. et al.: [PHOBOS Collaboration], J. Phys. G 30, S1133 (2004)

  30. Bjorken, J.D.: Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  31. Levai, P., Muller, B., Wang, X.N.: Phys. Rev. C 51, 3326 (1995)

    Article  ADS  Google Scholar 

  32. Wang, X.N., Gyulassy, M.: Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  33. Wang, X.N.: Phys. Rep. 280, 287 (1997)

    Article  ADS  Google Scholar 

  34. Brodsky, S.J., Gunion, J.F., Kuhn, J.H.: Phys. Rev. Lett. 39, 1120 (1977)

    Article  ADS  Google Scholar 

  35. Liang, Z.T., Song, J., Upsal, I., Wang, Q., Xu, Z.B.: Chin. Phys. C 45(1), 014102 (2021) https://doi.org/10.1088/1674-1137/abc065

  36. Sjöstrand, T., et al.: Comput. Phys. Commun. 191, 159 (2015)

    Article  ADS  Google Scholar 

  37. Liang, Z.T., Meng, T.C.: Phys. Z. A 344, 171 (1992)

    Google Scholar 

  38. Einstein, A., de Haas, W.J.: DFG Verhandlungen 17, 152 (1915)

    Google Scholar 

  39. Barnett, S.J.: Rev. Mod. Phys. 7, 129 (1935)

    Article  ADS  Google Scholar 

  40. Mayer, M.G., Jensen, J.H.D.: Elementary Theory of Nuclear Shell Structure. Wiley, New York and Chapman Hall, London (1955)

    MATH  Google Scholar 

  41. Mayer, M.G.: Phys. Rev. 75, 1969 (1949)

    Article  ADS  Google Scholar 

  42. Haxel, O., Jensen, J.H.D., Suess, H.E.: Phys. Rev. 75(11), 1766 (1949)

    Article  ADS  Google Scholar 

  43. Brambilla, N., Pineda, A., Soto, J., Vairo, A.: Rev. Mod. Phys. 77, 1423 (2005)

    Article  ADS  Google Scholar 

  44. Boros, C., Liang, Z.T., Meng, T.C.: Phys. Rev. Lett. 70, 1751 (1993); Boros, C., Liang, Z.T.: Phys. Rev. D 53, 2279-2283 (1996)

    Google Scholar 

  45. Brodsky, S.J., Hwang, D.S., Schmidt, I.: Phys. Lett. B 530, 99 (2002)

    Article  ADS  Google Scholar 

  46. Liang, Z.T., Boros, C.: Phys. Rev. Lett. 79, 3608 (1997)

    Article  ADS  Google Scholar 

  47. Liang, Z.T., Meng, T.C.: Phys. Rev. D 42, 2380 (1990)

    Article  ADS  Google Scholar 

  48. Bass, S.D.: Rev. Mod. Phys. 77, 1257 (2005)

    Article  ADS  Google Scholar 

  49. D’Alesio, U., Murgia, F.: Prog. Part. Nucl. Phys. 61, 394 (2008)

    Article  ADS  Google Scholar 

  50. Liang, Z.T.: Plenary talk at the 20th International Conference on Spin Physics, Oct. 2014, Beijing; published in Int. J. Mod. Phys. Conf. Ser. 40, 1660008 (2016)

    Google Scholar 

  51. Chen, K.B., Wei, S.Y., Liang, Z.T.: Front. Phys. (Beijing) 10, 6 (2015)

    Google Scholar 

  52. Gyulassy, M., Wang, X.N.: Nucl. Phys. B 420, 583 (1994)

    Article  ADS  Google Scholar 

  53. Weldon, H.A.: Phys. Rev. D 26, 1394 (1982)

    Article  ADS  Google Scholar 

  54. Wang, X.-N.: Phys. Lett. B 485, 157 (2000)

    Article  ADS  Google Scholar 

  55. Heiselberg, H., Wang, X.-N.: Nucl Phys. B462, 389 (1996)

    Article  ADS  Google Scholar 

  56. BirĂł, T.S., MĂĽller, B.: Nucl. Phys. A 561, 477 (1993)

    Article  ADS  Google Scholar 

  57. Muller, B., Rajagopal, K.: Eur. Phys. J. C 43, 15 (2005)

    Article  ADS  Google Scholar 

  58. Li, S.Y., Wang, X.N.: Phys. Lett. B 527, 85 (2002)

    Article  ADS  Google Scholar 

  59. Betz, B., Gyulassy, M., Torrieri, G.: Phys. Rev. C 76 (2007)

    Google Scholar 

  60. Becattini, F., Piccinini, F., Rizzo, J.: Phys. Rev. C 77 (2008)

    Google Scholar 

  61. Deng, W.T., Huang, X.G.: Phys. Rev. C 93, 6 (2016)

    Google Scholar 

  62. Fang, R.H., Pang, L.G., Wang, Q., Wang, X.N.: Phys. Rev. C 94, 2 (2016)

    Google Scholar 

  63. Pang, L.G., Petersen, H., Wang, Q., Wang, X.N.: Phys. Rev. Lett. 117 (2016)

    Google Scholar 

  64. Li, H., Petersen, H., Pang, L.G., Wang, Q., Xia, X.L., Wang, X.N.: Nucl. Phys. A 967, 772 (2017)

    Article  ADS  Google Scholar 

  65. Xia, X.L., Li, H., Tang, Z.B., Wang, Q.: Phys. Rev. C 98 (2018)

    Google Scholar 

  66. Florkowski, W., Kumar, A., Ryblewski, R.: Phys. Rev. C 98, 4 (2018)

    Article  Google Scholar 

  67. Wei, D.X., Deng, W.T., Huang, X.G.: Phys. Rev. C 99, 1 (2019)

    Article  Google Scholar 

  68. Zhang, J.J., Fang, R.H., Wang, Q., Wang, X.N.: Phys. Rev. C 100, 6 (2019)

    Google Scholar 

  69. Wu, H.Z., Zhang, J.J., Pang, L.G., Wang, Q.: Comput. Phys. Commun. (2019)

    Google Scholar 

  70. Weickgenannt, N., Speranza, E., Sheng, X., Wang, Q., Rischke, D.H.: arXiv:2005.01506 [hep-ph]

  71. De Groot, S.R., Van Leeuwen, W.A., Van Weert, C.G.: Amsterdam, p. 417p. North-holland, Netherlands (1980)

    Google Scholar 

  72. Buskulic, D., et al.: ALEPH Collaboration. Phys. Lett. B 374, 319 (1996)

    ADS  Google Scholar 

  73. Ackerstaff, K., et al.: OPAL Collaboration. Eur. Phys. J. C 2, 49 (1998)

    Article  ADS  Google Scholar 

  74. Ackerstaff, K., et al.: OPAL Collaboration. Phys. Lett. B 412, 210 (1997)

    Article  ADS  Google Scholar 

  75. Abreu, P., et al.: DELPHI Collaboration. Phys. Lett. B 406, 271 (1997)

    Article  ADS  Google Scholar 

  76. Ackerstaff, K., et al.: OPAL Collaboration. Z. Phys. C 74, 437 (1997)

    Google Scholar 

  77. Xu, Q.H., Liu, C.X., Liang, Z.T.: Phys. Rev. D 63 (2001)

    Google Scholar 

  78. Chen, K.B., Yang, W.H., Wei, S.Y., Liang, Z.T.: Phys. Rev. D 94, 3 (2016)

    Google Scholar 

  79. Chen, K.B., Yang, W.H., Zhou, Y.J., Liang, Z.T.: Phys. Rev. D 95, 3 (2017)

    Article  Google Scholar 

  80. Chen, K.B., Liang, Z.T., Song, Y.K., Wei, S.Y.: Phys. Rev. D 102, 3 (2020)

    Google Scholar 

  81. Gatto, R.: Phys. Rev. 109(2), 610 (1958)

    Article  ADS  Google Scholar 

  82. Gustafson, G., Hakkinen, J.: Phys. Lett. B 303, 350 (1993)

    Article  ADS  Google Scholar 

  83. Boros, C., Liang, Z.T.: Phys. Rev. D 57, 4491 (1998)

    Article  ADS  Google Scholar 

  84. Liu, C.-X., Liang, Z.-T.: Phys. Rev. D 62 (2000)

    Google Scholar 

  85. Becattini, F., Karpenko, I., Lisa, M., Upsal, I., Voloshin, S.: Phys. Rev. C 95 (2017)

    Google Scholar 

  86. Xia, X.L., Li, H., Huang, X.G., Huang, H.Z.: Phys. Rev. C 100, 1 (2019)

    Article  Google Scholar 

  87. Tanabashi, M., et al.: Particle Data Group. Phys. Rev. D 98, 3 (2018)

    Google Scholar 

  88. Voloshin, S.A.: nucl-th/0410089

    Google Scholar 

  89. Selyuzhenkov, I.V.: STAR Collaboration. Rom. Rep. Phys. 58, 049 (2006). [nucl-ex/0510069]

    Google Scholar 

  90. Selyuzhenkov, I.V.: STAR Collaboration. J. Phys. G 32, S557 (2006)

    Google Scholar 

  91. Selyuzhenkov, I.V.: STAR Collaboration. AIP Conf. Proc. 870(1), 712 (2006)

    Article  ADS  Google Scholar 

  92. Selyuzhenkov, I.V.: STAR Collaboration. J. Phys. G 34, S1099 (2007)

    Google Scholar 

  93. Chen, J.H.: STAR Collaboration. J. Phys. G 34, S331 (2007)

    Google Scholar 

  94. Abelev, B.I., et al.: STAR Collaboration. Phys. Rev. C 76 (2007)

    Google Scholar 

  95. Abelev, B.I., et al.: STAR Collaboration. Phys. Rev. C 77 (2008)

    Google Scholar 

  96. Adam, J., et al.: STAR Collaboration. Phys. Rev. C 98 (2018)

    Google Scholar 

  97. Acharya, S. et al.: [ALICE Collaboration], arXiv:1909.01281 [nucl-ex]

  98. Zhou, C.: Nucl. Phys. A 982, 559 (2019)

    Article  ADS  Google Scholar 

  99. Acharya, S. et al.: [ALICE Collaboration], arXiv:1910.14408 [nucl-ex]

  100. Ipp, A., Di Piazza, A., Evers, J., Keitel, C.H.: Phys. Lett. B 666, 315 (2008)

    Article  ADS  Google Scholar 

  101. Barros, C.D.C.Jr, Hama, Y.: Phys. Lett. B 699, 74 (2011)

    Article  ADS  Google Scholar 

  102. Xie, Y., Glastad, R.C., Csernai, L.P.: Phys. Rev. C 92, 6 (2015)

    Google Scholar 

  103. Jiang, Y., Lin, Z.W., Liao, J.: Phys. Rev. C 94(4), 044910 (2016) Erratum: [Phys. Rev. C 95(4), 049904 (2017)]

    Google Scholar 

  104. Montenegro, D., Tinti, L., Torrieri, G.: Phys. Rev. D 96(5), 056012 (2017) Addendum: [Phys. Rev. D 96(7), 079901 (2017)]

    Google Scholar 

  105. Xie, Y., Wang, D., Csernai, L.P.: Phys. Rev. C 95, 3 (2017)

    Google Scholar 

  106. Li, H., Pang, L.G., Wang, Q., Xia, X.L.: Phys. Rev. C 96, 5 (2017)

    Google Scholar 

  107. Sun, Y., Ko, C.M.: Phys. Rev. C 96, 2 (2017)

    Google Scholar 

  108. Yang, Y.G., Fang, R.H., Wang, Q., Wang, X.N.: Phys. Rev. C 97, 3 (2018)

    Google Scholar 

  109. Pang, L.G., Petersen, H., Wang, X.N.: Phys. Rev. C 97, 6 (2018)

    Article  Google Scholar 

  110. Hirono, Y., Kharzeev, D.E., Sadofyev, A.V.: Phys. Rev. Lett. 121, 14 (2018)

    Article  Google Scholar 

  111. Sun, Y., Ko, C.M.: Phys. Rev. C 99, 1 (2019)

    Google Scholar 

  112. Liang, Z.T.: plenary talk given at the19th International Conference on Ultra-Relativistic nucleus-nucleus collisions (Quark Matter 2006), Shanghai, China, November 14-20, 2006, published in J. Phys. G 34, S323 (2007)

    Google Scholar 

  113. Wang, Q.: Plenary talk at 26th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2017), Chicago, Illinois, USA, February 5-11, 2017, published in Nucl. Phys. A 967, 225 (2017)

    Google Scholar 

  114. Kharzeev, D.E., McLerran, L.D., Warringa, H.J.: Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298, arXiv:0711.0950 [hep-ph]

  115. Fukushima, K., Kharzeev, D.E., Warringa, H.J.: Phys. Rev. D 78 (2008). https://doi.org/10.1103/PhysRevD.78.074033, arXiv:0808.3382 [hep-ph]

  116. Kharzeev, D.E., Son, D.T.: Phys. Rev. Lett. 106 (2011)

    Google Scholar 

  117. Sheng, X.L., Oliva, L., Wang, Q.: arXiv:1910.13684 [nucl-th]

  118. Huang, X.G.: Rept. Prog. Phys. 79, 7 (2016)

    Article  Google Scholar 

  119. Kharzeev, D.E., Liao, J., Voloshin, S.A., Wang, G.: Prog. Part. Nucl. Phys. 88, 1 (2016)

    Article  ADS  Google Scholar 

  120. Florkowski, W., Ryblewski, R., Kumar, A.: Prog. Part. Nucl. Phys. 108 (2019)

    Google Scholar 

  121. Zhao, J., Wang, F.: Prog. Part. Nucl. Phys. 107, 200 (2019)

    Article  ADS  Google Scholar 

  122. Liu, Y.C., Huang, X.G.: Nucl. Sci. Tech. 31(6), 56 (2020)

    Article  Google Scholar 

  123. Wang, F.Q., Zhao, J.: Nucl. Sci. Tech. 29(12), 179 (2018)

    Article  Google Scholar 

  124. Huang, X.-G.: Plenary talk at the 28th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2019), Wuhan, China, November 4 to 9, 2019

    Google Scholar 

  125. Liao, J.-F.: Plenary talk at the 28th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2019), Wuhan, China, November 4 to 9, 2019

    Google Scholar 

  126. Xu, Z.: Plenary talk at the 28th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2019), Wuhan, China, November 4 to 9, 2019

    Google Scholar 

  127. Heinz, U.W.: Phys. Rev. Lett. 51, 351 (1983)

    Article  ADS  Google Scholar 

  128. Elze, H.T., Gyulassy, M., Vasak, D.: Nucl. Phys. B 276, 706 (1986)

    Article  ADS  Google Scholar 

  129. Vasak, D., Gyulassy, M., Elze, H.T.: Annals Phys.(N.Y.) 173, 462 (1987)

    Google Scholar 

  130. Zhuang, P., Heinz, U.W.: Ann. Phys. 245, 311 (1996)

    Article  ADS  Google Scholar 

  131. Gao, J.H., Liang, Z.T., Pu, S., Wang, Q., Wang, X.N.: Phys. Rev. Lett. 109 (2012)

    Google Scholar 

  132. Chen, J.W., Pu, S., Wang, Q., Wang, X.N.: Phys. Rev. Lett. 110, 26 (2013)

    Google Scholar 

  133. Gao, J.H., Liang, Z.T., Wang, Q., Wang, X.N.: Phys. Rev. D 98, 3 (2018)

    Google Scholar 

  134. Gao, J.h., Pang, J.Y., Wang, Q.: Phys. Rev. D 100(1), 016008 (2019)

    Google Scholar 

  135. Gao, J.H., Liang, Z.T.: Phys. Rev. D 100, 5 (2019)

    Google Scholar 

  136. Weickgenannt, N., Sheng, X.L., Speranza, E., Wang, Q., Rischke, D.H.: Phys. Rev. D 100, 5 (2019)

    Article  Google Scholar 

  137. Li, S., Yee, H.U.: Phys. Rev. D 100, 5 (2019)

    Google Scholar 

  138. Gao, J.H., Ma, G.L., Pu, S., Wang, Q.: Nucl. Sci. Tech. 31(9), 90 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We thank in particular many collaborators for excellent collaborations on this subject. This work was supported in part by the National Natural Science Foundation of China (Nos. 11890713, 11675092, 11535012, 11935007, 11861131009 and 11890714), and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under grant No. DE-AC02-05CH11231, the National Science Foundation (NSF) under grant No. ACI-1550228 within the framework of the JETSCAPE Collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-Tang Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, JH., Liang, ZT., Wang, Q., Wang, XN. (2021). Global Polarization Effect and Spin-Orbit Coupling in Strong Interaction. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_7

Download citation

Publish with us

Policies and ethics