Skip to main content

Thermodynamic Equilibrium of Massless Fermions with Vorticity, Chirality and Electromagnetic Field

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

Abstract

We present a study of the thermodynamics of the massless free Dirac field at equilibrium with axial charge, angular momentum and external electromagnetic field to assess the interplay between chirality, vorticity and electromagnetic field in relativistic fluids. After discussing the general features of global thermodynamic equilibrium in quantum relativistic statistical mechanics, we calculate the thermal expectation values. Axial imbalance and electromagnetic field are included non-perturbatively by using the exact solutions of the Dirac equation, while a perturbative expansion is carried out in thermal vorticity. It is shown that the chiral vortical effect and the axial vortical effect are not affected by a constant homogeneous electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that \(W^{A }w^\mu \rightarrow (W^{A }/T) \boldsymbol{\omega }\), so there is no divergency for \(T\rightarrow 0\).

  2. 2.

    We added a mass term for generalization, although with mass we cannot have a conserved axial current.

  3. 3.

    Note that to reduce the numbers of relations, we have indicated electric field and magnetic field derivative together with one derivative \(\partial _{\tilde{B}}\). However, electric and magnetic fields are independent and each derivative must be considered independently.

References

  1. Adamczyk, L., et al.: Nature 548, 62 (2017). https://doi.org/10.1038/nature23004

    Article  ADS  Google Scholar 

  2. Kharzeev, D.E., Liao, J., Voloshin, S.A., Wang, G.: Prog. Part. Nucl. Phys. 88, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.01.001

    Article  ADS  Google Scholar 

  3. Kharzeev, D.E., McLerran, L.D., Warringa, H.J.: Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298

    Article  ADS  Google Scholar 

  4. Fukushima, K., Kharzeev, D.E., Warringa, H.J.: Phys. Rev. D 78 (2008). https://doi.org/10.1103/PhysRevD.78.074033

  5. Heinz, U., Snellings, R.: Ann. Rev. Nucl. Part. Sci. 63, 123 (2013). https://doi.org/10.1146/annurev-nucl-102212-170540

    Article  ADS  Google Scholar 

  6. Hakim, R.: Introduction to Relativistic Statistical Mechanics: Classical and Quantum. World Scientific Publishing Co Inc (2011)

    Google Scholar 

  7. Israel, W.: Gen. Rel. Grav. 9, 451 (1978). https://doi.org/10.1007/BF00759845

    Article  ADS  Google Scholar 

  8. Canuto, V., Chiu, H.Y.: Phys. Rev. 173, 1220 (1968). https://doi.org/10.1103/PhysRev.173.1220

    Article  ADS  Google Scholar 

  9. Huang, X.G., Sedrakian, A., Rischke, D.H.: Ann. Phys. 326, 3075 (2011). https://doi.org/10.1016/j.aop.2011.08.001

    Article  ADS  Google Scholar 

  10. Kovtun, P.: JHEP 07, 028 (2016). https://doi.org/10.1007/JHEP07(2016)028

    Article  ADS  Google Scholar 

  11. Weickgenannt, N., Sheng, X.L., Speranza, E., Wang, Q., Rischke, D.H.: Phys. Rev. D 100 (2019). https://doi.org/10.1103/PhysRevD.100.056018

  12. Gao, J.H., Liang, Z.T.: Phys. Rev. D 100 (2019). https://doi.org/10.1103/PhysRevD.100.056021

  13. Chen, J.W., Pu, S., Wang, Q., Wang, X.N.: Phys. Rev. Lett. 110(26) (2013). https://doi.org/10.1103/PhysRevLett.110.262301

  14. Zubarev, D.N., Prozorkevich, A.V., Smolyanskii, S.A.: Theor. Math. Phys. 40(3), 821 (1979). https://doi.org/10.1007/BF01032069

    Article  Google Scholar 

  15. van Weert, C.G.: Ann. Phys. 140, 133 (1982). https://doi.org/10.1016/0003-4916(82)90338-4

    Article  ADS  Google Scholar 

  16. Becattini, F., Bucciantini, L., Grossi, E., Tinti, L.: Eur. Phys. J. C 75(5), 191 (2015). https://doi.org/10.1140/epjc/s10052-015-3384-y

    Article  ADS  Google Scholar 

  17. Hayata, T., Hidaka, Y., Noumi, T., Hongo, M.: Phys. Rev. D 92(6) (2015). https://doi.org/10.1103/PhysRevD.92.065008

  18. Hongo, M.: Ann. Phys. 383, 1 (2017). https://doi.org/10.1016/j.aop.2017.04.004

    Article  ADS  MathSciNet  Google Scholar 

  19. Becattini, F., Buzzegoli, M., Grossi, E.: Particles 2(2), 197 (2019). https://doi.org/10.3390/particles2020014

    Article  Google Scholar 

  20. Becattini, F., Florkowski, W., Speranza, E.: Phys. Lett. B 789, 419 (2019). https://doi.org/10.1016/j.physletb.2018.12.016

    Article  ADS  MathSciNet  Google Scholar 

  21. Becattini, F.: Phys. Rev. Lett. 108 (2012). https://doi.org/10.1103/PhysRevLett.108.244502

  22. Becattini, F., Grossi, E.: Phys. Rev. D 92 (2015). https://doi.org/10.1103/PhysRevD.92.045037

  23. Buzzegoli, M., Becattini, F.: JHEP 12, 002 (2018). https://doi.org/10.1007/JHEP12(2018)002

    Article  ADS  Google Scholar 

  24. Jensen, K., Loganayagam, R., Yarom, A.: JHEP 05, 134 (2014). https://doi.org/10.1007/JHEP05(2014)134

    Article  ADS  Google Scholar 

  25. Ambruç, V.E., Winstanley, E.: Phys. Lett. B 734, 296 (2014). https://doi.org/10.1016/j.physletb.2014.05.031

    Article  ADS  Google Scholar 

  26. Ambrus, V.E., Winstanley, E.: arXiv: 1908.10244 (2019)

  27. Becattini, F., Buzzegoli, M., Palermo, A.: arXiv:2007.08249 (2020)

  28. Becattini, F.: Phys. Rev. D 97(8) (2018). https://doi.org/10.1103/PhysRevD.97.085013

  29. Becattini, F., Rindori, D.: Phys. Rev. D 99(12) (2019). https://doi.org/10.1103/PhysRevD.99.125011

  30. Prokhorov, G.Y., Teryaev, O.V., Zakharov, V.I.: Particles 3(1), 1 (2020). https://doi.org/10.3390/particles3010001

    Article  Google Scholar 

  31. Prokhorov, G.Y., Teryaev, O.V., Zakharov, V.I.: Phys. Rev. D 99(7) (2019). https://doi.org/10.1103/PhysRevD.99.071901

  32. Prokhorov, G.Y., Teryaev, O.V., Zakharov, V.I.: JHEP 03, 137 (2020). https://doi.org/10.1007/JHEP03(2020)137

    Article  ADS  Google Scholar 

  33. Buzzegoli, M., Grossi, E., Becattini, F.: JHEP 10, 091 (2017). https://doi.org/10.1007/JHEP07(2018)119, https://doi.org/10.1007/JHEP10(2017)091. [Erratum: JHEP07,119(2018)]

  34. Hongo, M., Hidaka, Y.: Particles 2(2), 261 (2019). https://doi.org/10.3390/particles2020018

    Article  Google Scholar 

  35. Landsman, N., van Weert, C.: Phys. Rep. 145(3), 141 (1987). https://doi.org/10.1016/0370-1573(87)90121-9

    Article  ADS  MathSciNet  Google Scholar 

  36. Flachi, A., Fukushima, K.: Phys. Rev. D 98(9) (2018). https://doi.org/10.1103/PhysRevD.98.096011

  37. Prokhorov, G., Teryaev, O.: Phys. Rev. D 97(7) (2018). https://doi.org/10.1103/PhysRevD.97.076013

  38. Prokhorov, G., Teryaev, O., Zakharov, V.: Phys. Rev. D 98(7) (2018). https://doi.org/10.1103/PhysRevD.98.071901

  39. Tassie, L.J., Buchdahl, H.A.: Austral. J. Phys. 17, 431 (1964). https://doi.org/10.1071/PH640431

    Article  Google Scholar 

  40. Buchdahl, H.A., Tassie, L.J.: Austral. J. Phys. 18, 109 (1965). https://doi.org/10.1071/PH650109

    Article  Google Scholar 

  41. Bacry, H., Combe, P., Richard, J.L.: Nuovo Cim. A 67, 267 (1970). https://doi.org/10.1007/BF02725178

    Article  ADS  Google Scholar 

  42. Ritus, V.I.: Ann. Phys. 69, 555 (1972). https://doi.org/10.1016/0003-4916(72)90191-1

    Article  ADS  Google Scholar 

  43. Leung, C.N., Wang, S.Y.: Nucl. Phys. B 747, 266 (2006). https://doi.org/10.1016/j.nuclphysb.2006.04.028

    Article  ADS  Google Scholar 

  44. Laine, M., Vuorinen, A.: Lect. Notes Phys. 925, 1 (2016). https://doi.org/10.1007/978-3-319-31933-9

    Article  Google Scholar 

  45. Fukushima, K., Kharzeev, D.E., Warringa, H.J.: Nucl. Phys. A 836, 311 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.003

    Article  ADS  Google Scholar 

  46. Sadofyev, A., Shevchenko, V., Zakharov, V.: Phys. Rev. D 83, 105025 (2011).https://doi.org/10.1103/PhysRevD.83.105025

  47. Vilenkin, A.: Phys. Rev. D 22, 3080 (1980). https://doi.org/10.1103/PhysRevD.22.3080

    Article  ADS  Google Scholar 

  48. Metlitski, M.A., Zhitnitsky, A.R.: Phys. Rev. D 72 (2005). https://doi.org/10.1103/PhysRevD.72.045011

  49. Kharzeev, D.E.: Prog. Part. Nucl. Phys. 75, 133 (2014). https://doi.org/10.1016/j.ppnp.2014.01.002

    Article  ADS  Google Scholar 

  50. Zakharov, V.I.: Lect. Notes Phys. 871, 295 (2013). https://doi.org/10.1007/978-3-642-37305-3_11

    Article  ADS  Google Scholar 

  51. Feng, B., Hou, D.F., Ren, H.C.: Phys. Rev. D 99(3) (2019). https://doi.org/10.1103/PhysRevD.99.036010

  52. Landsteiner, K., Megias, E., Pena-Benitez, F.: Lect. Notes Phys. 871, 433 (2013). https://doi.org/10.1007/978-3-642-37305-3_17

    Article  ADS  Google Scholar 

  53. Gorbar, E.V., Miransky, V.A., Shovkovy, I.A., Wang, X.: Phys. Rev. D 88(2) (2013). https://doi.org/10.1103/PhysRevD.88.025025

Download references

Acknowledgements

I carried out part of this work while visiting Stony Brook University (New York, U.S.A.). I would like to thank F. Becattini, E. Grossi and D. Kharzeev for stimulating discussions on the subject matter. This research was supported in part by the Florence University with the fellowship “Polarizzazione nei fluidi relativistici”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Buzzegoli .

Editor information

Editors and Affiliations

Appendix: Thermodynamic Relations in Beta Frame

Appendix: Thermodynamic Relations in Beta Frame

At global thermal equilibrium with thermal vorticity, thermodynamic fields satisfy several equilibrium relations which constraints their coordinate dependence. In the \(\beta \)-frame, we can build several quantities from the four-vector \(\beta \) and thermal vorticity \(\varpi \):

$$\begin{aligned}\begin{gathered} u_\mu =\frac{\beta _\mu }{\sqrt{\beta ^2}};\quad \Delta ^{\mu \nu }=g^{\mu \nu }-u^\mu u^\nu ;\quad \varpi _{\mu \nu }=\partial _\nu \beta _\mu = \epsilon _{\mu \nu \rho \sigma }w^\rho u^\sigma +\alpha _\mu u_\nu - \alpha _\nu u_\mu ; \\ \alpha _\mu = \varpi _{\mu \nu } u^\nu ; \quad w_\mu =-\frac{1}{2} \epsilon _{\mu \nu \rho \sigma }\varpi ^{\nu \rho }u^\sigma ; \quad \gamma _\mu =(\alpha \cdot \varpi )^\lambda \Delta _{\lambda \mu }=\epsilon _{\mu \nu \rho \sigma } w^\nu \alpha ^\rho u^\sigma . \end{gathered}\end{aligned}$$

Most of these quantities depend on coordinates, and their derivatives are [33]:

$$\begin{aligned}\begin{gathered} \partial _\nu \beta _\mu = \varpi _{\mu \nu }; \quad \partial _\nu =-\alpha _\nu \frac{\partial }{\partial \sqrt{\beta ^2}};\quad \varpi : \varpi =2\left( \alpha ^2-w^2\right) \\ \partial _\nu u_\mu =\frac{1}{\sqrt{\beta ^2}}\big (\varpi _{\mu \nu }+\alpha _\nu u_\mu \big );\quad \partial ^\alpha u_\alpha =0;\quad u_\alpha \partial ^\alpha u_\mu =\frac{\alpha _\mu }{\sqrt{\beta ^2}};\\ \partial _\mu \alpha _\nu =\frac{1}{\sqrt{\beta ^2}}\big ( \varpi _{\nu \rho }\varpi ^\rho _{\,\,\mu }+\alpha _\mu \alpha _\nu \big );\quad \partial ^\alpha \alpha _\alpha =\frac{1}{\sqrt{\beta ^2}}\big ( 2w^2-\alpha ^2\big );\quad u_\alpha \partial ^\alpha \alpha ^2=0;\\ \partial _\mu w_\nu =\frac{1}{\sqrt{\beta ^2}}\big (\alpha _\mu w_\nu -\frac{1}{2}\epsilon _{\nu \rho \sigma \lambda }\varpi ^{\rho \sigma }\varpi ^\lambda _{\,\,\mu }\big );\quad \partial ^\alpha w_\alpha =-3\frac{w\cdot \alpha }{\sqrt{\beta ^2}}; \quad u_\alpha \partial ^\alpha w^2=0;\\ \alpha ^\sigma \partial _\mu \alpha _\sigma =w^\sigma \partial _\mu w_\sigma =\frac{1}{\sqrt{\beta ^2}}\big (w^2\alpha _\mu -(\alpha \cdot w)w_\mu \big );\quad \partial _\mu (\alpha \cdot w)=0;\\ \partial _\alpha \gamma ^\alpha =0;\quad \partial ^\alpha \Delta _{\alpha \beta }=-\frac{\alpha _\beta }{\sqrt{\beta ^2}}. \end{gathered}\end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buzzegoli, M. (2021). Thermodynamic Equilibrium of Massless Fermions with Vorticity, Chirality and Electromagnetic Field. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_3

Download citation

Publish with us

Policies and ethics