Skip to main content

Human Endogenous Retrovirus as Missing Link in the Global Etiopathogenesis of Schizophrenia and Bipolar Disorder

  • Chapter
  • First Online:
Immuno-Psychiatry
  • 880 Accesses

Abstract

Schizophrenia (SZ) and bipolar disorder (BD) involve complex interactions between genetic and environmental factors, but underlying mechanisms are poorly understood. This review explains how human endogenous retroviruses (HERVs) may provide a missing link between environmental factors, genomics, and pathogenic pathways leading to clinical expression. HERVs represent a disregarded part of the human genome resulting from endogenization of retroviruses during evolution. HERVs can be activated by environmental triggers such as infectious agents. Elevated HERV-W transcriptional activity or HERV-W ENV antigenemia were reported in patients with SZ or BD. A recent study showed that HERV-W ENV affected synaptic surface dynamics of glutamatergic receptors and that psychotic behavior was induced in an animal model expressing HERV-W ENV protein in hippocampal neurons. A specific antibody targeting HERV-W ENV inhibited HERV-W ENV pathogenic effects in vitro and prevented abnormal behavioral signs in vivo. A lifelong scenario of interactions between environmental pathogens and HERV-W genes is now presented, which may decipher the actual development and course of such diseases. New therapeutic strategies targeting pathogenic and nonphysiological agonists are also suggested, which may allow treating or possibly preventing SZ or BD without impairing physiological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uher R. Gene-environment interactions in severe mental illness. Front Psychiatry. 2014;5:48.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Misiak B, Stramecki F, Gaweda L, Prochwicz K, Sasiadek MM, Moustafa AA, et al. Interactions between variation in candidate genes and environmental factors in the etiology of schizophrenia and bipolar disorder: a systematic review. Mol Neurobiol. 2018;55(6):5075–100.

    Article  CAS  PubMed  Google Scholar 

  3. Mas S, Boloc D, Rodriguez N, Mezquida G, Amoretti S, Cuesta MJ, et al. Examining gene-environment interactions using aggregate scores in a first-episode psychosis cohort. Schizophr Bull. 2020;46(4):1019–25.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kano SI, Hodgkinson CA, Jones-Brando L, Eastwood S, Ishizuka K, Niwa M, et al. Host-parasite interaction associated with major mental illness. Mol Psychiatry. 2020;25(1):194–205.

    Article  PubMed  Google Scholar 

  5. Sahu G, Malavade K, Jacob T. Cognitive impairment in schizophrenia: interplay of BDNF and childhood trauma? A review of literature. Psychiatr Q. 2016;87(3):559–69.

    Article  PubMed  Google Scholar 

  6. Hamdani N, Daban-Huard C, Godin O, Laouamri H, Jamain S, Attiba D, et al. Effects of cumulative herpesviridae and toxoplasma gondii Infections on cognitive function in healthy, bipolar, and schizophrenia subjects. J Clin Psychiatry. 2017;78(1):e18–27.

    Article  PubMed  Google Scholar 

  7. Burgdorf KS, Trabjerg BB, Pedersen MG, Nissen J, Banasik K, Pedersen OB, et al. Large-scale study of toxoplasma and cytomegalovirus shows an association between infection and serious psychiatric disorders. Brain Behav Immun. 2019;79:152–8.

    Article  PubMed  Google Scholar 

  8. Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry. 2013;70(7):677–85.

    Article  PubMed  Google Scholar 

  9. Arias I, Sorlozano A, Villegas E, de Dios Luna J, McKenney K, Cervilla J, et al. Infectious agents associated with schizophrenia: a meta-analysis. Schizophr Res. 2012;136(1–3):128–36.

    Article  PubMed  Google Scholar 

  10. de Witte LD, van Mierlo HC, Litjens M, Klein HC, Bahn S, Osterhaus AD, et al. The association between antibodies to neurotropic pathogens and schizophrenia: a case-control study. NPJ Schizophr. 2015;1:15041.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tanaka T, Matsuda T, Hayes LN, Yang S, Rodriguez K, Severance EG, et al. Infection and inflammation in schizophrenia and bipolar disorder. Neurosci Res. 2017;115:59–63.

    Article  CAS  PubMed  Google Scholar 

  12. Dickerson F, Jones-Brando L, Ford G, Genovese G, Stallings C, Origoni A, et al. Schizophrenia is associated with an aberrant immune response to epstein-barr virus. Schizophr Bull. 2019;45(5):1112–9.

    Article  PubMed  Google Scholar 

  13. Leboyer M, Tamouza R, Charron D, Faucard R, Perron H. Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J Biol Psychiatry. 2013;14(2):80–90.

    Article  PubMed  Google Scholar 

  14. Allswede DM, Yolken RH, Buka SL, Cannon TD. Cytokine concentrations throughout pregnancy and risk for psychosis in adult offspring: a longitudinal case-control study. Lancet Psychiatry. 2020;7(3):254–61.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thomas P, Bhatia T, Gauba D, Wood J, Long C, Prasad K, et al. Exposure to herpes simplex virus, type 1 and reduced cognitive function. J Psychiatr Res. 2013;47(11):1680–5.

    Article  PubMed  Google Scholar 

  16. Fruchter E, Goldberg S, Fenchel D, Grotto I, Ginat K, Weiser M. The impact of Herpes simplex virus type 1 on cognitive impairments in young, healthy individuals—a historical prospective study. Schizophr Res. 2015;168(1-2):292–6.

    Article  PubMed  Google Scholar 

  17. Hjorthoj C, Starzer MSK, Benros ME, Nordentoft M. Infections as a risk factor for and prognostic factor after substance-induced psychoses. Am J Psychiatry. 2020;177(4):335–41.

    Article  PubMed  Google Scholar 

  18. Nudel R, Benros ME, Krebs MD, Allesoe RL, Lemvigh CK, Bybjerg-Grauholm J, et al. Immunity and mental illness: findings from a Danish population-based immunogenetic study of seven psychiatric and neurodevelopmental disorders. Eur J Hum Genet. 2019;27(9):1445–55.

    Article  PubMed  PubMed Central  Google Scholar 

  19. International Consortium on Lithium G, Amare AT, Schubert KO, Hou L, Clark SR, Papiol S, et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: a genome-wide association study. JAMA Psychiatry. 2018;75(1):65–74.

    Google Scholar 

  20. Calabro M, Drago A, Sidoti A, Serretti A, Crisafulli C. Genes involved in pruning and inflammation are enriched in a large mega-sample of patients affected by Schizophrenia and Bipolar Disorder and controls. Psychiatry Res. 2015;228(3):945–9.

    Article  PubMed  Google Scholar 

  21. Avramopoulos D, Pearce BD, McGrath J, Wolyniec P, Wang R, Eckart N, et al. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS One. 2015;10(3):e0116696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Forstner AJ, Fischer SB, Schenk LM, Strohmaier J, Maaser-Hecker A, Reinbold CS, et al. Whole-exome sequencing of 81 individuals from 27 multiply affected bipolar disorder families. Transl Psychiatry. 2020;10(1):57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nedic Erjavec G, Svob Strac D, Tudor L, Konjevod M, Sagud M, Pivac N. Genetic markers in psychiatry. Adv Exp Med Biol. 2019;1192:53–93.

    Article  CAS  PubMed  Google Scholar 

  24. Nishioka M, Bundo M, Iwamoto K, Kato T. Somatic mutations in the human brain: implications for psychiatric research. Mol Psychiatry. 2019;24(6):839–56.

    Article  PubMed  Google Scholar 

  25. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148(6):1223–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Green EK, Rees E, Walters JT, Smith KG, Forty L, Grozeva D, et al. Copy number variation in bipolar disorder. Mol Psychiatry. 2016;21(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  27. Balestrieri E, Matteucci C, Cipriani C, Grelli S, Ricceri L, Calamandrei G, et al. Endogenous retroviruses activity as a molecular signature of neurodevelopmental disorders. Int J Mol Sci. 2019;20:23.

    Article  CAS  Google Scholar 

  28. Feschotte C, Gilbert C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet. 2012;13(4):283–96.

    Article  CAS  PubMed  Google Scholar 

  29. Pani MA, Wood JP, Bieda K, Toenjes RR, Usadel KH, Badenhoop K. The variable endogenous retroviral insertion in the human complement C4 gene: a transmission study in type I diabetes mellitus. Hum Immunol. 2002;63(6):481–4.

    Article  CAS  PubMed  Google Scholar 

  30. Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci U S A. 2016;113(16):E2326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomas J, Perron H, Feschotte C. Variation in proviral content among human genomes mediated by LTR recombination. Mob DNA. 2018;9:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shin W, Lee J, Son SY, Ahn K, Kim HS, Han K. Human-specific HERV-K insertion causes genomic variations in the human genome. PLoS One. 2013;8(4):e60605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weckselblatt B, Rudd MK. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. 2015;31(10):587–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sutkowski N, Chen G, Calderon G, Huber BT. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol. 2004;78(14):7852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruprecht K, Obojes K, Wengel V, Gronen F, Kim KS, Perron H, et al. Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: implications for multiple sclerosis. J Neuro-Oncol. 2006;12(1):65–71.

    CAS  Google Scholar 

  36. Nellaker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH, Karlsson H. Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology. 2006;3:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Li F, Nellaker C, Sabunciyan S, Yolken RH, Jones-Brando L, Johansson AS, et al. Transcriptional derepression of the ERVWE1 locus following influenza A virus infection. J Virol. 2014;88(8):4328–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Charvet B, Reynaud JM, Gourru-Lesimple G, Perron H, Marche PN, Horvat B. Induction of proinflammatory multiple sclerosis-associated retrovirus envelope protein by human herpesvirus-6A and CD46 receptor engagement. Front Immunol. 2018;9:2803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kulski JK, Gaudieri S, Inoko H, Dawkins RL. Comparison between two human endogenous retrovirus (HERV)-rich regions within the major histocompatibility complex. J Mol Evol. 1999;48(6):675–83.

    Article  CAS  PubMed  Google Scholar 

  40. Andersson G, Svensson AC, Setterblad N, Rask L. Retroelements in the human MHC class II region. Trends Genet. 1998;14(3):109–14.

    Article  CAS  PubMed  Google Scholar 

  41. Suntsova M, Gogvadze EV, Salozhin S, Gaifullin N, Eroshkin F, Dmitriev SE, et al. Human-specific endogenous retroviral insert serves as an enhancer for the schizophrenia-linked gene PRODH. Proc Natl Acad Sci U S A. 2013;110(48):19472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deb-Rinker P, Klempan TA, O’Reilly RL, Torrey EF, Singh SM. Molecular characterization of a MSRV-like sequence identified by RDA from monozygotic twin pairs discordant for schizophrenia. Genomics. 1999;61(2):133–44.

    Article  CAS  PubMed  Google Scholar 

  43. Johansson EM, Bouchet D, Tamouza R, Ellul P, Morr A, Avignone E, et al. Human endogenous retroviral protein triggers deficit in glutamate synapse maturation and behaviors associated with psychosis. Sci Adv. 2020;6(29):eabc0708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perron H, Hamdani N, Faucard R, Lajnef M, Jamain S, Daban-Huard C, et al. Molecular characteristics of human endogenous retrovirus type-W in schizophrenia and bipolar disorder. Transl Psychiatry. 2012;2:e201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perron H, Mekaoui L, Bernard C, Veas F, Stefas I, Leboyer M. Endogenous retrovirus type W GAG and envelope protein antigenemia in serum of schizophrenic patients. Biol Psychiatry. 2008;64(12):1019–23.

    Article  CAS  PubMed  Google Scholar 

  46. Huang W, Li S, Hu Y, Yu H, Luo F, Zhang Q, et al. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr Bull. 2010;37(5):988–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Huang WJ, Liu ZC, Wei W, Wang GH, Wu JG, Zhu F. Human endogenous retroviral pol RNA and protein detected and identified in the blood of individuals with schizophrenia. Schizophr Res. 2006;83(2–3):193–9.

    Article  PubMed  Google Scholar 

  48. Karlsson H, Schroder J, Bachmann S, Bottmer C, Yolken RH. HERV-W-related RNA detected in plasma from individuals with recent-onset schizophrenia or schizoaffective disorder. Mol Psychiatry. 2004;9(1):12–3.

    Article  CAS  PubMed  Google Scholar 

  49. Karlsson H, Bachmann S, Schroder J, McArthur J, Torrey EF, Yolken RH. Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci U S A. 2001;98(8):4634–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perron H, Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol. 2010;39(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  51. Duperray A, Barbe D, Raguenez G, Weksler BB, Romero IA, Couraud PO, et al. Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4. Int Immunol. 2015;27(11):545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rolland A, Jouvin-Marche E, Saresella M, Ferrante P, Cavaretta R, Creange A, et al. Correlation between disease severity and in vitro cytokine production mediated by MSRV (multiple sclerosis associated retroviral element) envelope protein in patients with multiple sclerosis. J Neuroimmunol. 2005;160(1-2):195–203.

    Article  CAS  PubMed  Google Scholar 

  53. Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, et al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology. 2001;287(2):321–32.

    Article  CAS  PubMed  Google Scholar 

  54. Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci U S A. 1997;94(14):7583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blond JL, Beseme F, Duret L, Bouton O, Bedin F, Perron H, et al. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol. 1999;73(2):1175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perron H, Perin JP, Rieger F, Alliel PM. Particle-associated retroviral RNA and tandem RGH/HERV-W copies on human chromosome 7q: possible components of a ‘chain-reaction’ triggered by infectious agents in multiple sclerosis? J Neuro-Oncol. 2000;6(Suppl 2):S67–75.

    Google Scholar 

  57. Perron H, Bernard C, Bertrand JB, Lang AB, Popa I, Sanhadji K, et al. Endogenous retroviral genes, herpesviruses and gender in multiple sclerosis. J Neurol Sci. 2009;286(1–2):65–72.

    Article  CAS  PubMed  Google Scholar 

  58. Lafon M, Jouvin-Marche E, Marche PN, Perron H. Human viral superantigens: to be or not to be transactivated? Trends Immunol. 2002;23(5):238–9; author reply 9.

    Article  CAS  PubMed  Google Scholar 

  59. Perron H, Suh M, Lalande B, Gratacap B, Laurent A, Stoebner P, et al. Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol. 1993;74(Pt 1):65–72.

    Article  CAS  PubMed  Google Scholar 

  60. Frank O, Jones-Brando L, Leib-Mosch C, Yolken R, Seifarth W. Altered transcriptional activity of human endogenous retroviruses in neuroepithelial cells after infection with Toxoplasma gondii. J Infect Dis. 2006;194(10):1447–9.

    Article  CAS  PubMed  Google Scholar 

  61. Kelsch W, Li Z, Wieland S, Senkov O, Herb A, Gongrich C, et al. GluN2B-containing NMDA receptors promote glutamate synapse development in hippocampal interneurons. J Neurosci. 2014;34(48):16022–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Frank RA, Komiyama NH, Ryan TJ, Zhu F, O’Dell TJ, Grant SG. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu T, Kong D, Shah BP, Ye C, Koda S, Saunders A, et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron. 2012;73(3):511–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol. 2006;176(12):7636–44.

    Article  CAS  PubMed  Google Scholar 

  65. Tamminga CA, Zukin RS. Schizophrenia: evidence implicating hippocampal GluN2B protein and REST epigenetics in psychosis pathophysiology. Neuroscience. 2015;309:233–42.

    Article  CAS  PubMed  Google Scholar 

  66. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400.

    Article  CAS  PubMed  Google Scholar 

  67. Baez MV, Cercato MC, Jerusalinsky DA. NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast. 2018;2018:5093048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li B, Otsu Y, Murphy TH, Raymond LA. Developmental decrease in NMDA receptor desensitization associated with shift to synapse and interaction with postsynaptic density-95. J Neurosci. 2003;23(35):11244–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Perron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perron, H., Leboyer, M. (2021). Human Endogenous Retrovirus as Missing Link in the Global Etiopathogenesis of Schizophrenia and Bipolar Disorder. In: Berk, M., Leboyer, M., Sommer, I.E. (eds) Immuno-Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-71229-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71229-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71228-0

  • Online ISBN: 978-3-030-71229-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics