Skip to main content

Common Motifs in KEGG Cancer Pathways

  • Conference paper
  • First Online:
Advances in Computer Vision and Computational Biology
  • 783 Accesses

Abstract

Genes and gene products interact in an integrated and coordinated way to support functions of a living cell. In this research, we analyze these interactions in 17 different types of cancers, focusing on the interactions presented in pathway maps in Kyoto Encyclopedia of Genes and Genomes repository. We extracted the gene-to-gene interactions from the pathway maps and integrated them to form a large integrated graph. We then utilized different techniques and filtering criteria to extract and shed lights on the gene-gene interaction patterns. We conclude that the graph motifs we identified in cancer pathways provide insights for cancer biologists to connect dots and generate strong hypotheses so further biological investigations into cancer initiation, progression, and treatment can be conducted effectively.

Short Research Paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.P. Wild, E. Weiderpass, B.W. Stewart (eds.), World Cancer Report: Cancer Research for Cancer Prevention, World Cancer Reports, ISBN-13: 978-92-832-0448-0

    Google Scholar 

  2. L.A. Garraway, E.S. Lander, Lessons from the cancer genome. Cell 153(1), 17–37 (2013). https://doi.org/10.1016/j.cell.2013.03.002

    Article  Google Scholar 

  3. Cancer Types, National Cancer Institute. [Online]. Available: https://www.cancer.gov/types [Accessed: 5/24/2020]

  4. A.L. Barabási, Z.N. Oltvai, Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004). https://doi.org/10.1038/nrg1272

    Article  Google Scholar 

  5. NCI Dictionary of Cancer Terms. National Cancer Institute, 2011. [Online]. Available: https://www.cancer.gov/publications/dictionaries/cancer-terms [Accessed: 24-Nov-2019]

  6. KEGG: Kyoto Encyclopedia of Genes and Genomes – GenomeNet. [Online]. Available: http://www.genome.jp/kegg/ [Accessed: 24-Nov-2019]

  7. M. Bastian, S. Heymann, M. Jacomy, Gephi: An open source software for exploring and manipulating networks. Int. AAAI Conf. Weblogs Soc. Media (2009)

    Google Scholar 

  8. XML description of colorectal cancer pathway. [Online]. Available: http://rest.kegg.jp/get/hsa05210/kgml [Accessed: 24-Nov-2019]

  9. H.G. Cho, K.Y. Kuo, S. Li, et al., Frequent basal cell cancer development is a clinical marker for inherited cancer susceptibility. JCI Insight 3(15), e122744. Published 2018 Aug 9 (2018). https://doi.org/10.1172/jci.insight.122744

    Article  Google Scholar 

  10. Other associated cancers, Pancreatic Cancer UK. [Online]. Available: https://www.pancreaticcancer.org.uk/information-and-support/facts-about-pancreatic-cancer/types-of-pancreatic-cancer/other-cancers-linked-with-the-pancreas/. [Accessed: 24-Nov-2019]

  11. AACR Project GENIE Consortium, AACR project GENIE: Powering precision medicine through an international consortium. Cancer Discov. 7(8), 818–831 (2017). https://doi.org/10.1158/2159-8290.CD-17-0151

    Article  Google Scholar 

  12. A. Mogi, H. Kuwano, TP53 mutations in nonsmall cell lung cancer. J. Biomed. Biotechnol. 2011, 583929 (2011). https://doi.org/10.1155/2011/583929

    Article  Google Scholar 

  13. T.H. Ecke, H.H. Schlechte, K. Schiemenz, et al., TP53 gene mutations in prostate cancer progression. Anticancer Res. 30(5), 1579–1586 (2010)

    Google Scholar 

  14. M.T. Milano, R.L. Strawderman, S. Venigalla, K. Ng, L.B. Travis, Non-small-cell lung cancer after breast cancer: A population-based study of clinicopathologic characteristics and survival outcomes in 3529 women. J. Thorac. Oncol. 9(8), 1081–1090 (2014). https://doi.org/10.1097/JTO.0000000000000213

    Article  Google Scholar 

  15. O. Kranenburg, The KRAS oncogene: Past, present, and future. Biochim. Biophys. Acta 1756(2), 81–82 (2005). https://doi.org/10.1016/j.bbcan.2005.10.001

    Article  Google Scholar 

  16. Y. Pylayeva-Gupta, E. Grabocka, D. Bar-Sagi, RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11(11), 761–774. Published 2011 Oct 13 (2011). https://doi.org/10.1038/nrc3106

    Article  Google Scholar 

  17. S. Seton-Rogers, KRAS-G12C in the crosshairs. Nat. Rev. Cancer 20(1), 3 (2020). https://doi.org/10.1038/s41568-019-0228-3

    Article  Google Scholar 

  18. K. Ohashi, L.V. Sequist, M.E. Arcila, et al., Characteristics of lung cancers harboring NRAS mutations. Clin. Cancer Res. 19(9), 2584–2591 (2013). https://doi.org/10.1158/1078-0432.CCR-12-3173

    Article  Google Scholar 

  19. D.H. Fagan, D. Yee, Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J. Mammary Gland Biol. Neoplasia 13(4), 423–429 (2008). https://doi.org/10.1007/s10911-008-9098-0

    Article  Google Scholar 

  20. J. Luo, B.D. Manning, L.C. Cantley, Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell 4(4), 257–262 (2003)

    Article  Google Scholar 

  21. P. Liu, H. Cheng, T.M. Roberts, J.J. Zhao, Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer. Nat. Rev. Drug Discov. 8(8), 627–644 (2009). https://doi.org/10.1038/nrd2926

    Article  Google Scholar 

  22. F. Janku, T.A. Yap, F. Meric-Bernstam, Targeting the PI3K pathway in cancer: Are we making headway? Nat. Rev. Clin. Oncol. 15(5), 273–291 (2018). https://doi.org/10.1038/nrclinonc.2018.28

    Article  Google Scholar 

  23. Y. Samuels, Z. Wang, A. Bardelli, N. Silliman, J. Ptak, S. Szabo, et al., High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670), 554 (2004). https://doi.org/10.1126/science.1096502

    Article  Google Scholar 

  24. L.M. Thorpe, H. Yuzugullu, J.J. Zhao, PI3K in cancer: Divergent roles of isoforms, modes of activation, and therapeutic targeting. Nat. Rev. Cancer 15(1), 7–24 (2015). https://doi.org/10.1038/nrc3860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Hui Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paul, B.E., Kasem, O., Zhao, H., Duan, ZH. (2021). Common Motifs in KEGG Cancer Pathways. In: Arabnia, H.R., Deligiannidis, L., Shouno, H., Tinetti, F.G., Tran, QN. (eds) Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-71051-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71051-4_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71050-7

  • Online ISBN: 978-3-030-71051-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics