Skip to main content

Biochemical Indicators of Cholangiocarcinoma

  • Chapter
  • First Online:
Diagnosis and Management of Cholangiocarcinoma

Abstract

Cholangiocarcinoma (CCA) is one of the most frequent epithelial liver tumors and a significant problem with regard to clinical management. The causes of CCA are heterogeneous and associated with the geographic factors, with particularly high incidence in East Asian countries. Patients with CCA often suffer from adverse clinical outcomes and a poor prognosis, much of which is due to the lack of efficient diagnostic tools and biomarkers. Moreover, genome-wide screening of gene alterations and omics analyses demonstrate the highly diverse nature of oncogenic genetic factors among individual CCA tumor cells. Here, we summarize the current approaches to identifying CCA tumor biomarkers and other biochemical indicators for diagnosis and selection of appropriate treatment as a step toward precision medicine with personalized patient care and a goal of improved clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Alpha-fetoprotein

AID:

Activation-induced cytidine deaminase

AMPN:

Aminopeptidase N

APC:

Adenomatous polyposis coli

APOBEC:

Apolipoprotein B mRNA editing enzyme

ARID1A:

AT-rich interactive domain-containing protein 1A

AUC:

Area under the curve

BAP1:

BRCA1-associated protein 1

BAR:

Beta-catenin/armadillo-related protein

B-CADHERIN:

Brain cadherin (catenin cell-cell adhesion complex)

BCL2:

B-cell lymphoma 2

BCLX5:

B-cell lymphoma-extra large 5

BCLXL:

B-cell lymphoma-extra large

BRAF:

v-Raf murine sarcoma viral oncogene homolog

BRCA1:

Breast cancer susceptibility gene I

BRCA2:

Breast cancer susceptibility gene II

BSEP:

Bile salt export pump

CA 19-9:

Carbohydrate antigen 19-9

CCA:

Cholangiocarcinoma

CCND1:

Cyclin D1

CDC6:

Cell division cycle 6

CDK6:

Cyclin-dependent kinase 6

CDKN2A:

Cyclin-dependent kinase inhibitor 2

CEA:

Carcinoembryonic antigen

cfDNA:

Cell-free DNA

COX-2:

Cyclooxygenase 2

CTC:

Circulating tumor cell

CYP1A2:

Cytochrome P450 family 1 subfamily A member 2

dCCA:

Distal cholangiocarcinoma

EGFR:

Epidermal growth factor receptor

EpCAM:

Epithelial cell adhesion molecule

ERB-2:

Erb-B2 receptor tyrosine kinase 2

EVs:

Extracellular vesicles

FBXW7:

F-box and WD repeat domain containing 7

FGF19:

Fibroblast growth factor 19

FGFR2:

Fibroblast growth factor receptor 2

FIC1:

Familial intrahepatic cholestasis type 1

FXR:

Farnesoid X receptor

GANP:

Germinal center-associated nuclear protein

GSTO1:

Glutathione S-transferase omega 1

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HOXD9:

Homeobox protein Hox-D9

iCCA:

Intrahepatic cholangiocarcinoma

IDH1:

Isocitrate dehydrogenase [ADP(+) 1]

IDH2:

Isocitrate dehydrogenase [ADP(+) 2]

KEAP1:

Kelch-like ECH-associated protein 1

K-RAS:

Ki-ras2 Kirsten rat sarcoma viral oncogene homolog

LTO1:

LTO1 maturation factor of ABCE1

mAb:

Monoclonal antibody

MCL1:

Induced myeloid leukemia cell differentiation protein

MDM2:

Mouse double minute 2 homolog

MDR3:

Multidrug resistance gene 3

miR:

MicroRNA

MRP2:

Multidrug resistance-associated protein 2

MTHFR:

Methylenetetrahydrofolate reductase

MVs:

Microvesicles

MYC:

v-Myc myelocytomatosis viral oncogene homolog

NAT2:

Arylamine N-acetyltransferase 2

ncRNA:

Noncoding RNA

NF1:

Neurofibromin 1

NKG2D:

Natural killer cell lectin-like receptor subfamily 2D

OPCML:

Opioid binding protein/cell adhesion molecule-like

p14arf:

An alternative reading frame product of the CDKN2A locus

p16:

Cyclin-dependent kinase inhibitor protein p16 (INK4a)

PBRM1:

Protein polybromo-1

pCCA:

Perihilar cholangiocarcinoma

PD-1/PD-L2:

Programmed cell death 1/programmed death ligand 2

PI3KCA:

Phosphoinositide 3-kinase p110

PIGR:

Polymeric immunoglobulin receptor

PTEN:

Phosphatase and tensin homolog

RAD51AP1:

RAD51 associating protein-1

RASSF1A:

Ras association domain family 1 isoform A

ROS1:

ROS proto-oncogene 1

shRNA:

Short hairpin RNA

SIN1:

Stress-activated map kinase-interacting protein 1

Axin-1:

Axis inhibition protein 1

SMAD4:

Small body mothers against decapentaplegic 4

SOCS3:

Suppressor of cytokine signaling 3

TGF-β:

Transforming growth factor-β

TP53:

Tumor protein p53

TYMS:

Thymidylate synthetase

UNG:

Uracil nucleotide glycosidase

VNN1:

Vanin1

XRCC1:

X-ray repair cross-complementing protein 1

References

  1. Chalnuvati T, Paosawadhi A, Sripranoth M, Manasatith S, Viranuvatti V. Carcinoma of the cystic duct associated with opisthorchiasis. Southeast Asian J Trop Med Public Health. 1976;7:482–6.

    Google Scholar 

  2. Bridgewater J, Galle P, Khan S, Llovet J, Park J, Patel T, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;13:1268–89.

    Article  Google Scholar 

  3. Yothiasong S, Thanee M, Namwat N, Yongvanit P, Boonmars T, Puapairol A, et al. Opisthorchis viverrini infection activates the PI3K/AKT/PTRN and Wnt/β-catenin signaling pathways in a cholangiocarcinogenesis model. Asian Pac J Cancer Prev. 2014;15:10463–8.

    Article  Google Scholar 

  4. Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology. 2001;33:1353–7.

    Article  CAS  PubMed  Google Scholar 

  5. Montomli J, Erichsen R, Norgaard M, Hoye M, Hansen JB, Jacobsen JB. Survival of patients with primary liver cancer in central and northeastern Denmark, 1998–2009. Clin Epidemiol. 2011;3(Suppl 1):3–10.

    Article  Google Scholar 

  6. Qin XL, Wang ZR, Shi JS, Lu M, Wang L, He QR. Utility of serum CA19-9 in diagnosis of cholangiocarcinoma: in comparison with CEA. World J Gastroenterol. 2004;10:427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smout MJ, Laha T, Mulvenna J, Sripa B, Suttiprapa S, Jones A, et al. A granulin-like growth factor secreted by the carcinogenic liver fluke, Opisthorchis viverrini, promotes proliferation of host cells. PLoS Pathog. 2009;5(10):e1000611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Su CH, Lui WY, P’eng FK. Relative prevalence of gallstone diseases in Taiwan. A nationwide cooperative study. Dig Dis Sci. 1992;37:764–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kim MH, Lim BC, Myung SJ, Lee SK, Ohrr HC, Kim YT, et al. Epidemiological study on Korean gallstone disease: a nationwide cooperative study. Dig Dis Sci. 1999;44:1674–83.

    Article  CAS  PubMed  Google Scholar 

  10. Kim YH, Park SJ, Jang JY, Ahn YJ, Park YC, Yoon YB, et al. Changing patterns of gallstone disease in Korea. World J Surg. 2004;28:206–10.

    Article  PubMed  Google Scholar 

  11. Tazuma S. Gallstone disease: epidemiology, pathogenesis, and classification of biliary stones (common bile duct and intrahepatic). Best Pract Res Clin Gastroenterol. 2006;20:1075–83.

    Article  PubMed  Google Scholar 

  12. Nakanuma Y, Terada T, Tanaka Y, Ohta G. Are hepatolithiasis and cholangiocarcinoma aetiologically related? A morphological study of 12 cases of hepatolithiasis associated with cholangiocarcinoma. Virchows Arch A Pathol Anat Histopathol. 1985;406:45–58.

    Article  CAS  PubMed  Google Scholar 

  13. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145:1215–29.

    Article  CAS  PubMed  Google Scholar 

  14. Alvaro D, Crocetti E, Ferretti S, Bragazzi MC, Capocaccia R, AISF Cholangiocarcinoma Committee. Descriptive epidemiology of cholangiocarcinoma in Italy. Dig Liver Dis. 2010;42(7):490–5.

    Article  PubMed  Google Scholar 

  15. Fwu CW, Chien YC, You SL, Nelson KE, Kirk GD, Kuo HS, et al. Hepatitis B virus infection and risk of intrahepatic cholangiocarcinoma and non-Hodgkin lymphoma: a cohort study of parous women in Taiwan. Hepatology. 2011;53(4):1217–25.

    Article  PubMed  Google Scholar 

  16. Shin HR, Lee CU, Park HJ, Seol SY, Chung JM, Choi HC, et al. Hepatitis B and C virus, Clonorchis sinensis for the risk of liver cancer: a case–control study in Pusan, Korea. Int J Epidemiol. 1996;25:933–40.

    Article  CAS  PubMed  Google Scholar 

  17. Laulu S, Roberts W. Performance characteristics of five automated ca19.9 assays. Am J Clin Pathol. 2007;127(3):436–40.

    Article  CAS  Google Scholar 

  18. Tempero MA, Uchida E, Takasaki H, Burnett DA, Steplewski Z, Pour PM. Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res. 1987;47:5501–3.

    CAS  PubMed  Google Scholar 

  19. Levy C, Lymp J, Angulo P, Gores GJ, Larusso N, Lindor KD. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci. 2005;50(9):1734–40.

    Article  CAS  PubMed  Google Scholar 

  20. Charatcharoenwitthaya P, Enders FB, Halling KC, Lindor KD. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology. 2008;48(4):1106–17.

    Article  CAS  PubMed  Google Scholar 

  21. Sørensen CG, Karlsson WK, Pommergaard H-C, Burcharth J, Rosenberg J. The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence – a systematic review. Int J Surg. 2016;25:134–44.

    Article  PubMed  Google Scholar 

  22. Das V, Kalita J, Pal M. Predictive and prognostic biomarkers in colorectal cancer: a systematic review of recent advances and challenges. Biomed Pharmacother. 2017;87:8–19.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Li DJ, Chen J, Liu W, Li JW, Jiang P, et al. Application of joint detection of AFP, CA19-9, CA125 and CEA in identification and diagnosis of cholangiocarcinoma. Asian Pac J Cancer Prev. 2015;16(8):3451–5.

    Article  PubMed  Google Scholar 

  24. Loosen SH, Roderburg C, Kauertz KL, Koch A, Vucur M, Schneider AT, et al. CEA but not CA19-9 is an independent prognostic factor in patients undergoing resection of cholangiocarcinoma. Sci Rep. 2017;7:16975–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer. 2009;9(12):874–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matull WR, Andreola F, Loh A, Adiguzel Z, Deheragoda M, Qureshi U, et al. MUC4 and MUC5AC are highly specific tumour-associated mucins in biliary tract cancer. Br J Cancer. 2008;98:1675–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boonla C, Wongkham S, Sheehan JK, Wongkham C, Bhudhisawasdi V, Tepsiri N, et al. Prognostic value of serum MUC5AC mucin in patients with cholangiocarcinoma. Cancer. 2003;98:1438–43.

    Article  CAS  PubMed  Google Scholar 

  28. Danese E, Ruzzenente O, Ruzzenente A, Iacono C, Bertuzzo F, Gelati M, et al. Assessment of bile and serum mucin5AC in cholangiocarcinoma: diagnostic performance and biologic significance. Surgery. 2014;156(5):1218–24.

    Article  PubMed  Google Scholar 

  29. Zhang BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol. 2004;130:417–22.

    PubMed  Google Scholar 

  30. Liver Cancer Study Group of Japan. Primary liver cancer in Japan. Clinicopathologic features and results of surgical treatment. Ann Surg. 1990;211(3):277–87.

    Google Scholar 

  31. Tao LY, Cai L, He XD, Liu W, Qu Q. Comparison of serum tumor markers for intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Am Surg. 2010;76(11):1210–3.

    Article  PubMed  Google Scholar 

  32. Gahlot G, Joshi G. Evaluation of the importance of the serum levels of CA-125, CA19-9, CA-19-9, carcinoembryonic antigen and alpha fetoprotein for diagnosis of cholangiocarcinoma. Int J Adv Sci Eng Technol. 2018;6(1):2321–8991.

    Google Scholar 

  33. Shiao MS, Chiablaem K, Charoensawan V, Ngamphaiboon N, Jinawath N. Emergence of intrahepatic cholangiocarcinoma: how high-throughput technologies expedite the solutions for a rare cancer type. Front Genet. 2018;9:309–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47(9):1003–10.

    Article  CAS  PubMed  Google Scholar 

  35. Zou S, Li J, Zhou H, Frech C, Jiang X, Chu JS, et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat Commun. 2014;5:5696–707.

    Article  CAS  PubMed  Google Scholar 

  36. Churi CR, Shroff R, Wang Y, Rashid A, Kang HC, Weatherly J, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One. 2014;9(12):e115383–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Farshidfar F, Zheng S, Gingras MC, Newton Y, Shih J, Robertson AG, et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 2017;18:2780–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ross JS, Wang K, Gay L, Al-Rohil R, Rand JV, Jones DM, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014;19:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ettrich TJ, Schwerdel S, Dolnik A, Beuter F, Blatte TJ, Schmidt SA, et al. Genotyping of circulating tumor DNA in cholangiocarcinoma reveals diagnostic and prognostic information. Sci Rep. 2019;9:13261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.

    Article  PubMed  CAS  Google Scholar 

  41. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the misev2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

    Article  PubMed  Google Scholar 

  44. Li L, Masica D, Ishida M, Tomuleasa C, Umegaki S, Kalloo AN, Georgiades C, et al. Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis. Hepatology. 2014;60(3):896–907.

    Article  CAS  PubMed  Google Scholar 

  45. Chan KCA, Jiang P, Zheng YWL, Liao GJWW, Sun H, Wong J, et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem. 2013;59:211–24.

    Article  CAS  PubMed  Google Scholar 

  46. Dawson S-JJ, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin S-FF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209.

    Article  CAS  PubMed  Google Scholar 

  47. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murtaza M, Dawson SJ, Tsui DWY, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497:108–12.

    Article  CAS  PubMed  Google Scholar 

  49. Chan KCA, Jiang P, Chan CWM, Sun K, Wong J, Hui EP, et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A. 2013;110:18761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wen L, Li J, Guo H, Liu X, Zheng S, Zhang D, et al. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res. 2015;25:1250–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heitzer E, Ulz P, Geigl JB, Speicher MR. Non-invasive detection of genome-wide somatic copy number alterations by liquid biopsies. Mol Oncol. 2016;10:494–502.

    Article  CAS  PubMed  Google Scholar 

  52. Tsui NBY, Jiang P, Wong YF, Leung TY, Chan KCA, Chiu RWK, et al. Maternal plasma RNA sequencing for genome-wide transcriptomic profiling and identification of pregnancy-associated transcripts. Clin Chem. 2014;60:954–62.

    Article  CAS  PubMed  Google Scholar 

  53. Koh W, Pan W, Gawad C, Fan HC, Kerchner GA, Wyss-Coray T, et al. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc Natl Acad Sci U S A. 2014;111:7361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goyal L, Saha SK, Liu LY, Siravegna G, Leshchiner I, Ahronian LG, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 2017;7(3):252–63.

    Article  CAS  PubMed  Google Scholar 

  55. Wasenang W, Chaiyarit P, Proungvitaya S, Limpaiboon T. Serum cell-free DNA methylation of OPCML and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other biliary diseases. Clin Epigenetics. 2019;11(1):39–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Salati M, Braconi C. Noncoding RNA in cholangiocarcinoma. Semin Liver Dis. 2019;39(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  57. Sun C, Zhu J, Wu B, Chen J, Zhu Z, Cai P, et al. Diagnostic and prognostic value of microRNAs in cholangiocarcinoma: a systematic review and meta-analysis. Cancer Manag Res. 2018;10:2125–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu X, Xia M, Chen D, Wu F, Lv Z, Zhan Q, et al. Profiling of downregulated blood-circulating miR-150-5p as a novel tumor marker for cholangiocarcinoma. Tumour Biol. 2016;37(11):15019–29.

    Article  CAS  PubMed  Google Scholar 

  59. Wang LJ, Zhang KL, Zhang N, Ma XW, Yan SW, Cao DH, et al. Serum miR-26a as a diagnostic and prognostic biomarker in cholangiocarcinoma. Oncotarget. 2015;6(21):18631–40.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang LJ, He CC, Sui X, Cai MJ, Zhou CY, Ma JL, et al. MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTPN14 and PTEN. Oncotarget. 2015;6(8):5932–46.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang L, Li Y, Xu J, Zhang A, Wang X, Tang R, et al. Quantified postsurgical small cell size CTCs and EpCAM+ circulating tumor stem cells with cytogenetic abnormalities in hepatocellular carcinoma patients determine cancer relapse. Cancer Lett. 2018;412:99–107.

    Article  CAS  PubMed  Google Scholar 

  63. Jusakul A, Cutcutache I, Yong CH, Lim JQ, Huang MN, Padmanabhan N, et al. Whole-genome and epigenetic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017;7:1116–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Banales J, Cardinale V, Carpino G, Marzioni M, Anderson J, Inernizzi P, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261–89.

    Article  PubMed  Google Scholar 

  65. Labib PL, Goodchild G, Pereira SP. Molecular pathogenesis of cholangiocarcinoma. BMC Cancer. 2019;19:185–201.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chan-On W, Kuwahara K, Kobayashi N, Ohta K, Shimasaki T, Sripa B, et al. Cholangiocarcinomas associated with long-term inflammation express the activation-induced cytidine deaminase and germinal center–associated nuclear protein involved in immunoglobulin V-region diversification. Int J Oncol. 2009;35:287–95.

    CAS  PubMed  Google Scholar 

  67. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    Article  CAS  PubMed  Google Scholar 

  68. Maeda K, Singh SK, Eda K, Kitabatake M, Pham P, Goodman MF, et al. GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region DNA. J Biol Chem. 2010;285:23945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh SK, Maeda K, Eid MMA, Almofty AM, Ono M, Pham P, et al. GANP regulates targeting of AID to the immunoglobulin variable region by regulating transcription and nucleosome occupancy. Nat Commun. 2013;4:1830.

    Article  PubMed  CAS  Google Scholar 

  70. Endo Y, Marusawa H, Chiba T. Involvement of activation-induced cytidine deaminase in the development of colitis-associated colorectal cancers. J Gastroenterol. 2011;1:6–10.

    Article  CAS  Google Scholar 

  71. Marusawa H, Takai A, Chiba T. Role of activation-induced cytidine deaminase in inflammation-associated cancer development. Adv Immunol. 2011;111:109–41.

    Article  CAS  PubMed  Google Scholar 

  72. Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T, et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med. 2007;13:470–6.

    Article  CAS  PubMed  Google Scholar 

  73. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013;494:366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Eid MM, Maeda K, Almofty SA, Singh SK, Shimoda M, Sakaguchi N. GANP regulates the choice of DNA repair pathway by DNA-PKcs interaction in AID-dependent IgV region diversification. J Immunol. 2014;192:5529–39.

    Article  CAS  PubMed  Google Scholar 

  75. Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia. 2018;32:1529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fukazawa T, Maeda Y, Sladek FM, Owen-Schaub LB. Development of a cancer-targeted tissue-specific promoter system. Cancer Res. 2004;64:363–9.

    Article  CAS  PubMed  Google Scholar 

  77. Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T, et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med. 2000;6(1):96–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Sopit Wongkham and Atit Silsirivanit (Khon Kaen University, Thailand) for continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Sakaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luang, S., Minamiya, M., Sakaguchi, N. (2021). Biochemical Indicators of Cholangiocarcinoma. In: Tabibian, J.H. (eds) Diagnosis and Management of Cholangiocarcinoma. Springer, Cham. https://doi.org/10.1007/978-3-030-70936-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70936-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70935-8

  • Online ISBN: 978-3-030-70936-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics