Skip to main content

Established and Emerging Biomarkers for Prediction, Early Detection, and Prognostication of Cholangiocarcinoma

  • Chapter
  • First Online:
Diagnosis and Management of Cholangiocarcinoma

Abstract

Cholangiocarcinoma (CCA) remains a deadly disease in part due to its late diagnosis. Non-invasive approaches to early detection are challenging, and pathological confirmation is usually required for final diagnosis. In this chapter, we summarise the biomarkers in clinical use as well as those currently under study for the detection and prognostic classification of CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBD:

benign biliary disorders

CCA:

cholangiocarcinoma

CT:

computed tomography

CTCs:

circulating tumour cells

eCCA:

extrahepatic cholangiocarcinoma

ERCP:

endoscopic retrograde cholangiopancreatography

EUS:

endoscopic ultrasonography

EVs:

extracellular vesicles

HCC:

hepatocellular carcinoma

iCCA:

intrahepatic cholangiocarcinoma

MRI:

magnetic resonance imaging

pCCA:

perihilar cholangiocarcinoma

PSC:

primary sclerosing cholangitis

PTC:

percutaneous transhepatic cholangiography

UC:

ulcerative colitis

VOCs:

volatile organic compounds

References

  1. Ongen Z. What do biomarkers mark? Anatol J Cardiol. 2016;16(2):75.

    PubMed  PubMed Central  Google Scholar 

  2. Diamandis EP. Towards identification of true cancer biomarkers. BMC Med. 2014;12(1):156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Srivastava A, Creek DJ. Discovery and validation of clinical biomarkers of cancer: a review combining metabolomics and proteomics. Proteomics. 2019;19(10):e1700448.

    Article  PubMed  CAS  Google Scholar 

  4. Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6(2):140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Macias RIR, et al. The search for novel diagnostic and prognostic biomarkers in cholangiocarcinoma. Biochim Biophys Acta Mol basis Dis. 2018;1864(4 Pt B):1468–77.

    Article  CAS  PubMed  Google Scholar 

  6. Banales JM, et al. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13(5):261–80.

    Article  PubMed  Google Scholar 

  7. Marin JJG, et al. Chemoresistance and chemosensitization in cholangiocarcinoma. Biochim Biophys Acta Mol basis Dis. 2018;1864(4 Pt B):1444–53.

    Article  CAS  PubMed  Google Scholar 

  8. Banales JM, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17:557.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15(2):95–111.

    Article  CAS  PubMed  Google Scholar 

  10. Eloubeidi MA, et al. Endoscopic ultrasound-guided fine needle aspiration biopsy of suspected cholangiocarcinoma. Clin Gastroenterol Hepatol. 2004;2(3):209–13.

    Article  PubMed  Google Scholar 

  11. Macias RIR, et al. Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver Int. 2019;39(Suppl 1):108–22.

    Article  PubMed  Google Scholar 

  12. Malaguarnera G, Paladina I, Giordano M, Malaguarnera M, Bertino G, Berretta M. Serum markers of intrahepatic cholangiocarcinoma. Dis Markers. 2013;34(4):219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wannhoff A, et al. FUT2 and FUT3 genotype determines CA19-9 cut-off values for detection of cholangiocarcinoma in patients with primary sclerosing cholangitis. J Hepatol. 2013;59(6):1278–84.

    Article  CAS  PubMed  Google Scholar 

  14. Khan SA, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012;61(12):1657–69.

    Article  CAS  PubMed  Google Scholar 

  15. Wadsworth CA, Lim A, Taylor-Robinson SD, Khan SA. The risk factors and diagnosis of cholangiocarcinoma. Hepatol Int. 2013;7(2):377–93.

    Article  PubMed  Google Scholar 

  16. Dumonceau J-M, Delhaye M, Charette N, Farina A. Challenging biliary strictures: pathophysiological features, differential diagnosis, diagnostic algorithms, and new clinically relevant biomarkers - part 1. Ther Adv Gastroenterol. 2020;13:1756284820927292.

    Article  CAS  Google Scholar 

  17. Levy C, Lymp J, Angulo P, Gores GJ, Larusso N, Lindor KD. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci. 2005;50(9):1734–40.

    Article  CAS  PubMed  Google Scholar 

  18. He X-D, et al. The risk of carcinogenesis in congenital choledochal cyst patients: an analysis of 214 cases. Ann Hepatol. 2014;13(6):819–26.

    Article  PubMed  Google Scholar 

  19. Galli C, Basso D, Plebani M. CA 19-9: handle with care. Clin Chem Lab Med. 2013;51(7):1369–83.

    Article  CAS  PubMed  Google Scholar 

  20. Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32(3–4):643–71.

    Article  CAS  PubMed  Google Scholar 

  21. Fang T, Wang H, Wang Y, Lin X, Cui Y, Wang Z. Clinical significance of preoperative serum CEA, CA125, and CA19-9 levels in predicting the Resectability of Cholangiocarcinoma. Dis Markers. 2019;2019:6016931.

    PubMed  PubMed Central  Google Scholar 

  22. Rule AH, Goleski-Reilly C, Sachar DB, Vandevoorde J, Janowitz HD. Circulating carcinoembryonic antigen (CEA): relationship to clinical status of patients with inflammatory bowel disease. Gut. 1973;14(11):880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Felder M, et al. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer. 2014;13:129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Moss EL, Hollingworth J, Reynolds TM. The role of CA125 in clinical practice. J Clin Pathol. 2005;58(3):308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lapitz A, et al. Extracellular vesicles in hepatobiliary malignancies. Front Immunol. 2018;9:2270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yanez-Mo M, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

    Article  PubMed  Google Scholar 

  27. Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87.

    Article  CAS  PubMed  Google Scholar 

  28. Pisitkun T, Shen R-F, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368 LP–13373.

    Article  Google Scholar 

  29. Masyuk AI, et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol. 2010;299(4):G990–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ogawa Y, et al. Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull. 2011;34(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Wang X. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer. Mol Cancer. 2017;16(1):92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hirsova P, et al. Extracellular vesicles in liver pathobiology: small particles with big impact. Hepatology. 2016;64(6):2219–33.

    Article  PubMed  Google Scholar 

  33. Gonzalez E, Falcon-Perez JM. Cell-derived extracellular vesicles as a platform to identify low-invasive disease biomarkers. Expert Rev Mol Diagn. 2015;15(7):907–23.

    Article  CAS  PubMed  Google Scholar 

  34. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie F, Feng S, Yang H, Mao Y. Extracellular vesicles in hepatocellular cancer and cholangiocarcinoma. Ann Transl Med. 2019;7(5):86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arbelaiz A, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2017;66(4):1125–43.

    Article  CAS  PubMed  Google Scholar 

  37. Lapitz A, et al. Patients with Cholangiocarcinoma present specific RNA profiles in serum and urine extracellular vesicles mirroring the tumor expression: novel liquid biopsy biomarkers for disease diagnosis. Cell. 2020;9(3):721.

    Article  CAS  Google Scholar 

  38. Julich-Haertel H, et al. Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. J Hepatol. 2017;67(2):282–92.

    Article  CAS  PubMed  Google Scholar 

  39. Olaizola P, et al. MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol basis Dis. 2018;1864(4 Pt B):1293–307.

    Article  CAS  PubMed  Google Scholar 

  40. Andersen RF, Jakobsen A. Screening for circulating RAS/RAF mutations by multiplex digital PCR. Clin Chim Acta. 2016;458:138–43.

    Article  CAS  PubMed  Google Scholar 

  41. Liang Z, Liu X, Zhang Q, Wang C, Zhao Y. Diagnostic value of microRNAs as biomarkers for cholangiocarcinoma. Dig Liver Dis. 2016;48(10):1227–32.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou J, Liu Z, Yang S, Li X. Identification of microRNAs as biomarkers for cholangiocarcinoma detection: a diagnostic meta-analysis. Clin Res Hepatol Gastroenterol. 2017;41(2):156–62.

    Article  CAS  PubMed  Google Scholar 

  43. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Correa-Gallego C, et al. Circulating plasma levels of MicroRNA-21 and MicroRNA-221 are potential diagnostic markers for primary intrahepatic Cholangiocarcinoma. PLoS One. 2016;11(9):e0163699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Huang C-S, et al. Increased expression of miR-21 predicts poor prognosis in patients with hepatocellular carcinoma. Int J Clin Exp Pathol. 2015;8(6):7234–8.

    PubMed  PubMed Central  Google Scholar 

  46. Wang L-J, et al. Serum miR-26a as a diagnostic and prognostic biomarker in cholangiocarcinoma. Oncotarget. 2015;6(21):18631–40.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wu X, et al. Profiling of downregulated blood-circulating miR-150-5p as a novel tumor marker for cholangiocarcinoma. Tumour Biol. 2016;37(11):15019–29.

    Article  CAS  PubMed  Google Scholar 

  48. Silakit R, et al. Circulating miR-192 in liver fluke-associated cholangiocarcinoma patients: a prospective prognostic indicator. J Hepatobiliary Pancreat Sci. 2014;21(12):864–72.

    Article  PubMed  Google Scholar 

  49. Cheng Q, et al. Circulating miR-106a is a novel prognostic and lymph node metastasis Indicator for Cholangiocarcinoma. Sci Rep. 2015;5(1):16103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bernuzzi F, et al. Serum microRNAs as novel biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Clin Exp Immunol. 2016;185(1):61–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Voigtlander T, et al. MicroRNAs in serum and bile of patients with primary sclerosing cholangitis and/or Cholangiocarcinoma. PLoS One. 2015;10(10):e0139305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J. 2018;16:370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011;11(5):759–69.

    Article  CAS  PubMed  Google Scholar 

  54. Giachelli CM, Steitz S. Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol. 2000;19(7):615–22.

    Article  CAS  PubMed  Google Scholar 

  55. Wai PY, Kuo PC. Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev. 2008;27(1):103–18.

    Article  CAS  PubMed  Google Scholar 

  56. Loosen SH, et al. Elevated levels of circulating osteopontin are associated with a poor survival after resection of cholangiocarcinoma. J Hepatol. 2017;67(4):749–57.

    Article  CAS  PubMed  Google Scholar 

  57. O’Hara SP, Splinter PL, Trussoni CE, Gajdos GB, Lineswala PN, LaRusso NF. Cholangiocyte N-Ras protein mediates lipopolysaccharide-induced interleukin 6 secretion and proliferation. J Biol Chem. 2011;286(35):30352–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tabibian JH, O’Hara SP, Splinter PL, Trussoni CE, LaRusso NF. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology. 2014;59(6):2263–75.

    Article  CAS  PubMed  Google Scholar 

  59. Tabibian JH, Trussoni CE, O’Hara SP, Splinter PL, Heimbach JK, LaRusso NF. Characterization of cultured cholangiocytes isolated from livers of patients with primary sclerosing cholangitis. Lab Investig. 2014;94(10):1126–33.

    Article  CAS  PubMed  Google Scholar 

  60. Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 2016;37(9):11553–72.

    Article  CAS  PubMed  Google Scholar 

  61. Cheon YK, et al. Diagnostic utility of interleukin-6 (IL-6) for primary bile duct cancer and changes in serum IL-6 levels following photodynamic therapy. Am J Gastroenterol. 2007;102(10):2164–70.

    Article  CAS  PubMed  Google Scholar 

  62. Wang C-Q, et al. Interleukin-6 enhances cancer stemness and promotes metastasis of hepatocellular carcinoma via up-regulating osteopontin expression. Am J Cancer Res. 2016;6(9):1873–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kimawaha P, Jusakul A, Junsawang P, Loilome W, Khuntikeo N, Techasen A. Circulating TGF-β1 as the potential epithelial mesenchymal transition-biomarker for diagnosis of cholangiocarcinoma. J Gastrointest Oncol. 2020;11(2):304–18.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chapman MH, et al. Circulating CYFRA 21-1 is a specific diagnostic and prognostic biomarker in biliary tract cancer. J Clin Exp Hepatol. 2011;1(1):6–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Edelman MJ, et al. CYFRA 21-1 as a prognostic and predictive marker in advanced non-small-cell lung cancer in a prospective trial: CALGB 150304. J Thorac Oncol. 2012;7(4):649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang L, et al. Serum CYFRA 21-1 in biliary tract cancers: a reliable biomarker for gallbladder carcinoma and intrahepatic Cholangiocarcinoma. Dig Dis Sci. 2015;60(5):1273–83.

    Article  CAS  PubMed  Google Scholar 

  67. Uenishi T, et al. Serum cytokeratin 19 fragment (CYFRA21-1) as a prognostic factor in intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2008;15(2):583–9.

    Article  PubMed  Google Scholar 

  68. Cuenco J, et al. Identification of a serum biomarker panel for the differential diagnosis of cholangiocarcinoma and primary sclerosing cholangitis. Oncotarget. 2018;9(25):17430–42.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vairaktaris E, et al. High gene expression of matrix metalloproteinase-7 is associated with early stages of oral cancer. Anticancer Res. 2007;27(4B):2493–8.

    CAS  PubMed  Google Scholar 

  70. Štrbac D, Goričar K, Dolžan V, Kovač V. Evaluation of matrix metalloproteinase 9 serum concentration as a biomarker in malignant mesothelioma. Dis Markers. 2019;2019:1242964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Nanda DP, Sil H, Moulik S, Biswas J, Mandal SS, Chatterjee A. Matrix metalloproteinase-9 as a potential tumor marker in breast cancer. J Environ Pathol Toxicol Oncol. 2013;32(2):115–29.

    Article  CAS  PubMed  Google Scholar 

  72. Lawicki S, Glazewska EK, Sobolewska M, Bedkowska GE, Szmitkowski M. Plasma levels and diagnostic utility of macrophage Colony-stimulating factor, matrix Metalloproteinase-9, and tissue inhibitor of Metalloproteinases-1 as new biomarkers of breast cancer. Ann Lab Med. 2016;36(3):223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leelawat K, Sakchinabut S, Narong S, Wannaprasert J. Detection of serum MMP-7 and MMP-9 in cholangiocarcinoma patients: evaluation of diagnostic accuracy. BMC Gastroenterol. 2009;9:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Onsurathum S, et al. Proteomics detection of S100A6 in tumor tissue interstitial fluid and evaluation of its potential as a biomarker of cholangiocarcinoma. Tumour Biol. 2018;40(4):1010428318767195.

    Article  PubMed  CAS  Google Scholar 

  75. Shi R-Y, et al. High expression of Dickkopf-related protein 1 is related to lymphatic metastasis and indicates poor prognosis in intrahepatic cholangiocarcinoma patients after surgery. Cancer. 2013;119(5):993–1003.

    Article  CAS  PubMed  Google Scholar 

  76. Shen J, et al. Comparative proteomic profiling of human bile reveals SSP411 as a novel biomarker of cholangiocarcinoma. PLoS One. 2012;7(10):e47476–6.

    Google Scholar 

  77. Xu H, et al. Elevation of serum KL-6 mucin levels in patients with cholangiocarcinoma. Hepato-Gastroenterology. 2008;55(88):2000–4.

    CAS  PubMed  Google Scholar 

  78. Li Y, et al. Application of joint detection of AFP, CA19-9, CA125 and CEA in identification and diagnosis of Cholangiocarcinoma. Asian Pac J Cancer Prev. 2015;16(8):3451–5.

    Article  PubMed  Google Scholar 

  79. Zhang Y, Yang J, Li H, Wu Y, Zhang H, Chen W. Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: a meta-analysis. Int J Clin Exp Med. 2015;8(7):11683–91.

    PubMed  PubMed Central  Google Scholar 

  80. Tao L-Y, Cai L, He X-D, Liu W, Qu Q. Comparison of serum tumor markers for intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Am Surg. 2010;76(11):1210–3.

    Article  PubMed  Google Scholar 

  81. Wongkham S, et al. Clinical significance of serum total sialic acid in cholangiocarcinoma. Clin Chim Acta. 2003;327(1–2):139–47.

    Article  CAS  PubMed  Google Scholar 

  82. Wongkham S, Boonla C, Kongkham S, Wongkham C, Bhudhisawasdi V, Sripa B. Serum total sialic acid in cholangiocarcinoma patients: an ROC curve analysis. Clin Biochem. 2001;34(7):537–41.

    Article  CAS  PubMed  Google Scholar 

  83. Kongtawelert P, Tangkijvanich P, Ong-Chai S, Poovorawan Y. Role of serum total sialic acid in differentiating cholangiocarcinoma from hepatocellular carcinoma. World J Gastroenterol. 2003;9(10):2178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liang Q, Liu H, Zhang T, Jiang Y, Xing H, Zhang H. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma. Mol BioSyst. 2016;12(2):334–40.

    Article  CAS  PubMed  Google Scholar 

  85. Sun Y-F, et al. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology. 2013;57(4):1458–68.

    Article  CAS  PubMed  Google Scholar 

  86. Arnoletti JP, et al. Pancreatic and bile duct cancer circulating tumor cells (CTC) form immune-resistant multi-cell type clusters in the portal venous circulation. Cancer Biol Ther. 2018;19(10):887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tan CRC, Zhou L, El-Deiry WS. Circulating tumor cells versus circulating tumor DNA in colorectal cancer: Pros and Cons. Curr Colorectal Cancer Rep. 2016;12(3):151–61.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Arnoletti JP, et al. Portal venous blood circulation supports immunosuppressive environment and pancreatic cancer circulating tumor cell activation. Pancreas. 2017;46(1):116–23.

    Article  CAS  PubMed  Google Scholar 

  89. Al Ustwani O, Iancu D, Yacoub R, Iyer R. Detection of circulating tumor cells in cancers of biliary origin. J Gastrointest Oncol. 2012;3(2):97–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Intuyod K, Armartmuntree N, Jusakul A, Sakonsinsiri C, Thanan R, Pinlaor S. Current omics-based biomarkers for cholangiocarcinoma. Expert Rev Mol Diagn. 2019;19(11):997–1005.

    Article  CAS  PubMed  Google Scholar 

  91. Son KH, Ahn CB, Kim HJ, Kim JS. Quantitative proteomic analysis of bile in extrahepatic cholangiocarcinoma patients. J Cancer. 2020;11(14):4073–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Park JY, Park BK, Ko JS, Bang S, Song SY, Chung JB. Bile acid analysis in biliary tract cancer. Yonsei Med J. 2006;47(6):817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nagana Gowda GA, Shanaiah N, Cooper A, Maluccio M, Raftery D. Bile acids conjugation in human bile is not random: new insights from (1)H-NMR spectroscopy at 800 MHz. Lipids. 2009;44(6):527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sharif AW, et al. Metabolic profiling of bile in cholangiocarcinoma using in vitro magnetic resonance spectroscopy. HPB (Oxford). 2010;12(6):396–402.

    Article  Google Scholar 

  95. Albiin N, et al. Detection of cholangiocarcinoma with magnetic resonance spectroscopy of bile in patients with and without primary sclerosing cholangitis. Acta Radiol. 2008;49(8):855–62.

    Article  CAS  PubMed  Google Scholar 

  96. Alvaro D, et al. Serum and biliary insulin-like growth factor I and vascular endothelial growth factor in determining the cause of obstructive cholestasis. Ann Intern Med. 2007;147(7):451–9.

    Article  PubMed  Google Scholar 

  97. Chiang K-C, et al. Lipocalin 2 (LCN2) is a promising target for cholangiocarcinoma treatment and bile LCN2 level is a potential cholangiocarcinoma diagnostic marker. Sci Rep. 2016;6:36138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tye BK. MCM proteins in DNA replication. Annu Rev Biochem. 1999;68:649–86.

    Article  CAS  PubMed  Google Scholar 

  99. Ren B, et al. MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene. 2006;25(7):1090–8.

    Article  CAS  PubMed  Google Scholar 

  100. Kim D-W, et al. Transcriptional induction of minichromosome maintenance protein 7 (Mcm7) in human cholangiocarcinoma cells treated with Clonorchis sinensis excretory-secretory products. Mol Biochem Parasitol. 2010;173(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  101. Ayaru L, et al. Diagnosis of pancreaticobiliary malignancy by detection of minichromosome maintenance protein 5 in bile aspirates. Br J Cancer. 2008;98(9):1548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen C-Y, Tsai W-L, Wu H-C, Syu M-J, Wu C-C, Shiesh S-C. Diagnostic role of biliary pancreatic elastase for cholangiocarcinoma in patients with cholestasis. Clin Chim Acta. 2008;390(1–2):82–9.

    CAS  PubMed  Google Scholar 

  103. Koopmann J, et al. Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer. 2004;101(7):1609–15.

    Article  CAS  PubMed  Google Scholar 

  104. Severino V, et al. Extracellular vesicles in bile as markers of malignant biliary Stenoses. Gastroenterology. 2017;153(2):495–504.e8.

    Article  PubMed  Google Scholar 

  105. Li L, et al. Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis. Hepatology. 2014;60(3):896–907.

    Article  CAS  PubMed  Google Scholar 

  106. Plieskatt J, et al. A microRNA profile associated with Opisthorchis viverrini-induced cholangiocarcinoma in tissue and plasma. BMC Cancer. 2015;15:309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Shin S-H, et al. Bile-based detection of extrahepatic cholangiocarcinoma with quantitative DNA methylation markers and its high sensitivity. J Mol Diagn. 2012;14(3):256–63.

    Article  CAS  PubMed  Google Scholar 

  108. Lesurtel M, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312(5770):104–7.

    Article  CAS  PubMed  Google Scholar 

  109. Alpini G, et al. Serotonin metabolism is dysregulated in cholangiocarcinoma, which has implications for tumor growth. Cancer Res. 2008;68(22):9184–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Smith ZL, Guzzo TJ. Urinary markers for bladder cancer. F1000Prime Rep. 2013;5:21.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Morrissey JJ, London AN, Luo J, Kharasch ED. Urinary biomarkers for the early diagnosis of kidney cancer. Mayo Clin Proc. 2010;85(5):413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cartlidge CR, U Abellona MR, Alkhatib AMA, Taylor-Robinson SD. The utility of biomarkers in hepatocellular carcinoma: review of urine-based (1)H-NMR studies - what the clinician needs to know. Int J Gen Med. 2017;10:431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Radon TP, et al. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin Cancer Res. 2015;21(15):3512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jing J, Gao Y. Urine biomarkers in the early stages of diseases: current status and perspective. Discov Med. 2018;25(136):57–65.

    PubMed  Google Scholar 

  115. Navaneethan U, et al. Volatile organic compounds in urine for noninvasive diagnosis of malignant biliary strictures: a pilot study. Dig Dis Sci. 2015;60(7):2150–7.

    Article  CAS  PubMed  Google Scholar 

  116. Metzger J, et al. Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut. 2013;62(1):122–30.

    Article  CAS  PubMed  Google Scholar 

  117. Voigtländer T, et al. Bile and urine peptide marker profiles: access keys to molecular pathways and biological processes in cholangiocarcinoma. J Biomed Sci. 2020;27(1):13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Borad MJ, et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet. 2014;10(2):e1004135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Zou S, et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat Commun. 2014;5:5696.

    Article  CAS  PubMed  Google Scholar 

  120. Wang P, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32(25):3091–100.

    Article  CAS  PubMed  Google Scholar 

  121. Nakamura H, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47(9):1003–10.

    Article  CAS  PubMed  Google Scholar 

  122. Nepal C, et al. Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology. 2018;68(3):949–63.

    Article  CAS  PubMed  Google Scholar 

  123. Andresen K, et al. Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma. Hepatology. 2015;61(5):1651–9.

    Article  CAS  PubMed  Google Scholar 

  124. Limpaiboon T, et al. Promoter hypermethylation is a major event of hMLH1 gene inactivation in liver fluke related cholangiocarcinoma. Cancer Lett. 2005;217(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  125. Vedeld HM, et al. The novel colorectal cancer biomarkers CDO1, ZSCAN18 and ZNF331 are frequently methylated across gastrointestinal cancers. Int J Cancer. 2015;136(4):844–53.

    Article  PubMed  CAS  Google Scholar 

  126. Sia D, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology. 2013;144(4):829–40.

    Article  CAS  PubMed  Google Scholar 

  127. Ghidini M, et al. Characterisation of the immune-related transcriptome in resected biliary tract cancers. Eur J Cancer. 2017;86:158–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sawada R, et al. Interleukin-33 overexpression reflects less aggressive tumour features in large-duct type cholangiocarcinomas. Histopathology. 2018;73(2):259–72.

    Article  PubMed  Google Scholar 

  129. Ruys AT, Groot Koerkamp B, Wiggers JK, Klumpen H-J, ten Kate FJ, van Gulik TM. Prognostic biomarkers in patients with resected cholangiocarcinoma: a systematic review and meta-analysis. Ann Surg Oncol. 2014;21(2):487–500.

    Article  PubMed  Google Scholar 

  130. Suzuki H, et al. Relationship between 18-F-fluoro-deoxy-D-glucose uptake and expression of glucose transporter 1 and pyruvate kinase M2 in intrahepatic cholangiocarcinoma. Dig Liver Dis. 2015;47(7):590–6.

    Article  CAS  PubMed  Google Scholar 

  131. Selaru FM, et al. MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology. 2009;49(5):1595–601.

    Article  CAS  PubMed  Google Scholar 

  132. He Q, et al. Ars2 is overexpressed in human cholangiocarcinomas and its depletion increases PTEN and PDCD4 by decreasing microRNA-21. Mol Carcinog. 2013;52(4):286–96.

    Article  CAS  PubMed  Google Scholar 

  133. Collins AL, et al. A differential microRNA profile distinguishes cholangiocarcinoma from pancreatic adenocarcinoma. Ann Surg Oncol. 2014;21(1):133–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Sampedro, A., Acedo, P., Pereira, S.P. (2021). Established and Emerging Biomarkers for Prediction, Early Detection, and Prognostication of Cholangiocarcinoma. In: Tabibian, J.H. (eds) Diagnosis and Management of Cholangiocarcinoma. Springer, Cham. https://doi.org/10.1007/978-3-030-70936-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70936-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70935-8

  • Online ISBN: 978-3-030-70936-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics