Skip to main content
Log in

Volatile Organic Compounds in Urine for Noninvasive Diagnosis of Malignant Biliary Strictures: A Pilot Study

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The use of volatile organic compounds (VOCs) in bile was recently studied and appeared promising for diagnosis of malignancy. Noninvasive diagnosis of malignant biliary strictures by using VOCs in urine has not been studied.

Aim

To identify potential VOCs in urine to diagnose malignant biliary strictures.

Methods

In this prospective cross-sectional study, urine was obtained immediately prior to ERCP from consecutive patients with biliary strictures. Selected-ion flow-tube mass spectrometry was used to analyze the concentration of VOCs in urine samples.

Results

Fifty-four patients with biliary strictures were enrolled. Fifteen patients had malignant stricture [six cholangiocarcinoma (CCA) and nine pancreatic cancer], and 39 patients had benign strictures [10 primary sclerosing cholangitis (PSC) and 29 with benign biliary conditions including chronic pancreatitis and papillary stenosis]. The concentration of several compounds (ethanol and 2-propanol) was significantly different in patients with malignant compared with benign biliary strictures (p < 0.05). Using receiver operating characteristic curve analysis, we developed a model for the diagnosis of malignant biliary strictures adjusted for age and gender based on VOC levels of 2-propranol, carbon disulfide, and trimethyl amine (TMA). The model [−2.4191 * log(2-propanol) + 1.1617 * log(TMA) − 1.2172 * log(carbon disulfide)] ≥ 7.73 identified the patients with malignant biliary stricture [area under the curve (AUC = 0.83)], with 93.3 % sensitivity and 61.5 % specificity (p = 0.009). Comparing patients with CCA and PSC, the model [38.864 * log(ethane) − 3.989 * log(1-octene)] ≤ 169.9 could identify CCA with 80 % sensitivity and 100 % specificity (AUC = 0.9).

Conclusions

Measurement of VOCs in urine may diagnose malignant biliary strictures noninvasively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under curve

CCA:

Cholangiocarcinoma

EUS:

Endoscopic ultrasound

ERCP:

Endoscopic retrograde cholangiopancreatography

FNA:

Fine-needle aspiration

FISH:

Fluorescence in situ hybridization

PSC:

Primary sclerosing cholangitis

TMA:

Trimethyl amine

VOCs:

Volatile organic compounds

References

  1. Qureshi K, Jesudoss R, Al-Osaimi AM. The treatment of cholangiocarcinoma: a hepatologist’s perspective. Curr Gastroenterol Rep. 2014;16:412. doi:10.1007/s11894-014-0412-2.

    Article  PubMed  Google Scholar 

  2. Friman S. Cholangiocarcinoma–current treatment options. Scand J Surg.. 2011;100:30–34.

    CAS  PubMed  Google Scholar 

  3. DeOliveira ML. Liver transplantation for cholangiocarcinoma: current best practice. Curr Opin Organ Transpl. 2014;19:245–252.

    Article  CAS  Google Scholar 

  4. Tan X, Xiao K, Liu W, Chang S, Zhang T, Tang H. Prognostic factors of distal cholangiocarcinoma after curative surgery: a series of 84 cases. Hepatogastroenterology. 2013;60:1892–1895.

    CAS  PubMed  Google Scholar 

  5. Navaneethan U, Njei B, Venkatesh PG, Vargo JJ, Parsi MA. Fluorescence in situ hybridization for diagnosis of cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc. 2013;. doi:10.1016/j.gie.2013.11.001.

    Google Scholar 

  6. Navaneethan U, Njei B, Lourdusamy V, et al. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest Endosc. 2014;. doi:10.1016/j.gie.2014.09.017.

    Google Scholar 

  7. Trikudanathan G, Navaneethan U, Njei B, Vargo JJ, Parsi MA. Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc.. 2014;79:783–789.

    Article  PubMed  Google Scholar 

  8. Navaneethan U, Njei B, Venkatesh PG, Lourdusamy V, Sanaka MR. Endoscopic ultrasound in the diagnosis of cholangiocarcinoma as the etiology of biliary strictures: a systematic review and meta-analysis. Gastroenterol Rep (Oxf). 2014 Aug 27.

  9. Levy MJ, Heimbach JK, Gores GJ. Endoscopic ultrasound staging of cholangiocarcinoma. Curr Opin Gastroenterol. 2012;28:244–252.

    Article  PubMed  Google Scholar 

  10. Lin MS, Huang JX, Yu H. Elevated serum level of carbohydrate antigen 19-9 in benign biliary stricture diseases can reduce its value as a tumor marker. Int J Clin Exp Med. 2014;7:744–750.

    PubMed Central  PubMed  Google Scholar 

  11. Ong SL, Sachdeva A, Garcea G, et al. Elevation of carbohydrate antigen 19.9 in benign hepatobiliary conditions and its correlation with serum bilirubin concentration. Dig Dis Sci. 2008;53:3213–3217.

    Article  CAS  PubMed  Google Scholar 

  12. Navaneethan U, Parsi MA, Gutierrez NG, et al. Volatile organic compounds in bile can diagnose malignant biliary strictures in the setting of pancreatic cancer: a preliminary observation. Gastrointest Endosc. 2014;. doi:10.1016/j.gie.2014.04.016.

    Google Scholar 

  13. Navaneethan U, Parsi MA, Gutierrez NG, et al. Volatile organic compounds in bile for early diagnosis of cholangiocarcinoma in patients with primary sclerosing cholangitis: a pilot study. Gastrointest Endosc. 2014;. doi:10.1016/j.gie.2014.09.041.

    Google Scholar 

  14. Metzger J, Negm AA, Plentz RR, et al. Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut. 2013;62:122–130.

    Article  CAS  PubMed  Google Scholar 

  15. Navaneethan U, Gutierrez NG, Venkatesh PG, et al. Lipidomic profiling of bile in distinguishing benign from malignant biliary strictures: a single-blinded pilot study. Am J Gastroenterol. 2014;109:895–902.

    Article  CAS  PubMed  Google Scholar 

  16. de Lacy Costello B, Amann A, Al-Kateb H, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014;8:014001. doi:10.1088/1752-7155/8/1/014001.

    Article  Google Scholar 

  17. de Boer NK, de Meij TG, Oort FA, et al. The scent of colorectal cancer: detection by volatile organic compound analysis. Clin Gastroenterol Hepatol. 2014;12:1085–1089. doi:10.1016/j.cgh.2014.05.005.

    Article  PubMed  Google Scholar 

  18. Filipiak W, Filipiak A, Sponring A, et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J Breath Res. 2014;8:027111. doi:10.1088/1752-7155/8/2/027111.

    Article  PubMed  Google Scholar 

  19. Altomare DF, Di Lena M, Porcelli F, et al. Exhaled volatile organic compounds identify patients with colorectal cancer. Br J Surg. 2013;100:144–150.

    Article  CAS  PubMed  Google Scholar 

  20. de Meij TG, Larbi IB, van der Schee MP, et al. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker analysis: proof of principle study. Int J Cancer. 2014;134:1132–1138. doi:10.1002/ijc.28446.

    Article  PubMed  Google Scholar 

  21. Huang J, Kumar S, Abbassi-Ghadi N, Spaněl P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of volatile metabolites in urine headspace for the profiling of gastro-esophageal cancer. Anal Chem. 2013;85:3409–3416. doi:10.1021/ac4000656.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Huang J, Cushnir JR, Španěl P, Smith D, Hanna GB. Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-esophageal cancer. Anal Chem. 2012;84:9550–9557. doi:10.1021/ac302409a.

    CAS  PubMed  Google Scholar 

  23. Miekisch W, Schubert JK, Noeldge-Schomburg GF. Diagnostic potential of breath analysis–focus on volatile organic compounds. Clin Chim Acta. 2004;347:25–39.

    Article  CAS  PubMed  Google Scholar 

  24. Probert CS, Ahmed I, Khalid T, Johnson E, Smith S, Ratcliffe N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J Gastrointestin Liver Dis. 2009;18:337–343.

    PubMed  Google Scholar 

  25. Volinsky R, Kinnunen PK. Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology. FEBS J. 2013;280:2806–2816.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Klipfell E, Bennett BJ, Koeth R, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tesiram YA, Lerner M, Stewart C, Njoku C, Brackett DJ. Utility of nuclear magnetic resonance spectroscopy for pancreatic cancer studies. Pancreas. 2012;41:474–480.

    Article  PubMed  Google Scholar 

  28. He XH, Li WT, Gu YJ, et al. Metabonomic studies of pancreatic cancer response to radiotherapy in a mouse xenograft model using magnetic resonance spectroscopy and principal components analysis. World J Gastroenterol. 2013;19:4200–4208.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We also would like to thank the Clinical Research Unit members at the Cleveland Clinic who helped in processing the urine samples. The study was supported by a research grant from the American College of Gastroenterology (ACG) Grant (to U.N), BRCP 08-049 Tech 09-003 Third Frontier Program grant from the Ohio Department of Development (ODOD) [to R.D] and in part by the National Institutes of Health, National Center for Research Resources, CTSA, UL1TR 000439-06 Cleveland, Ohio. Dr Dweik was also supported by the following grants: HL107147, HL081064, HL103453, HL109250, and RR026231 from the National Institutes of Health (NIH).

Conflict of interest

The authors declared no financial conflict of interest pertaining to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udayakumar Navaneethan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navaneethan, U., Parsi, M.A., Lourdusamy, D. et al. Volatile Organic Compounds in Urine for Noninvasive Diagnosis of Malignant Biliary Strictures: A Pilot Study. Dig Dis Sci 60, 2150–2157 (2015). https://doi.org/10.1007/s10620-015-3596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3596-x

Keywords

Navigation