Skip to main content

[111In-DTPA0-D-Phe1]-Octreotide: The Ligand—The Receptor—The Label

  • Chapter
  • First Online:
Liver Intra-arterial PRRT with 111In-Octreotide
  • 268 Accesses

Abstract

Almost half a century ago, in the first January 1973 issue of Science, the Roger Guillemin group in the Salk Institute (La Jolla, California), published a paper that proved the presence of a bioactive peptide in ovine hypothalamic extracts, with inhibitory effect in the secretion of immunoreactive growth hormone (GH). In the same paper, the structure of this 14-peptide was elucidated and its synthetic form was shown to elicit the same biological response in rats and humans, as well, hence its name: Somatostatin (SST) or Somatotropin-release inhibiting factor” (SRIF) [1]. SST belongs to the homonymous peptide family with cortistatin (CST). CST-17 is the bioactive cleavage product of a CST precursor peptide in humans, being a relatively recent addition. CST-17 shares common structural and functional features with SST (SST: SST-14 and SST-28 are the bioactive peptides, see Fig. 4.1), such as the depression of neuronal activity and some distinct properties as well, such as the activation of cation selective currents, not responsive to SST. It should be emphasized though, that these peptides (SST and CST) are the products of separate genes [3–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brazeau P, Vale W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of imunoreactive pituitary growth hormone. Science. 1973;179:77–9.

    Article  CAS  Google Scholar 

  2. Weckbecker G, Lewis I, Albert R, et al. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov. 2003;2:999–1017. https://doi.org/10.1038/nrd1255.

    Article  CAS  PubMed  Google Scholar 

  3. Bushberg JT, Seibert JA, Leid EM. The essential physics of medical imaging. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  4. De Lecea L, Criado JR, Prospero-Garcia O, et al. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature. 1996;381:242–5.

    Article  Google Scholar 

  5. Gottero C, Prodam F, Destefanis S, et al. Cortistatin-17 and -14 exert the same endocrine activities as somatostatin in humans. Growth Hormon IGF Res. 2004;14:382–7.

    Article  CAS  Google Scholar 

  6. IUPAC-IUB Common Biochem Nomenclature. An one-letter notation for amino acid sequences. Tentative rules. Biochemistry. 1968;7:2703–5. https://doi.org/10.1021/bi00848a001.

    Article  Google Scholar 

  7. Elliott DE. Somatostatin. 2001. https://epdf.tips/somatostatin9b1681210755ce0bffeb5c27a17209b838154.html. Accessed 19 Oct 2018.

  8. Bronstein-Sitton N. Somatostatin and the somatostatin receptors: versatile regulators of biological activity. 2018. https://www.alomone.com/article/somatostatin-somatostatin-receptors-versatile-regulators-biological-activity. Accessed 15 Oct 2018.

  9. Barbieri F, Bajetto A, Pattarozzi A, et al. Peptide receptor targeting in cancer: the somatostatin paradigm. Int J Pept. 2013;2013:926295, 20 p. https://doi.org/10.1155/2013/926295.

  10. Körner M, Reubi JC. Somatostatin. In: Kastin A, editor. Handbook of biologically active peptides. 1st ed. USA: Elsevier; 2006. p. 435–43.

    Chapter  Google Scholar 

  11. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20:157–98.

    Article  CAS  Google Scholar 

  12. Dalm DU, de Jong M. Comparing the use of radiolabeled SSTR agonists and an SSTR antagonist in breast cancer: does the model choice influence the outcome? EJNMMI Radiopharm Chem. 2017;2:11. https://doi.org/10.1186/s41181-017-0030-z.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tulipano G, Schulz S. Novel insights in somatostatin receptor physiology. Eur J Endocrinol. 2007;156:S3–S11. https://doi.org/10.1530/eje.1.02354.

    Article  CAS  PubMed  Google Scholar 

  14. Reubi JC, Waser B, Mäcke H, et al. Highly increased 125I-JR11 antagonist binding in vitro reveals novel indications for sst2 targeting in human cancers. J Nucl Med. 2017;58:300–6. https://doi.org/10.2967/jnumed.116.177733.

    Article  CAS  PubMed  Google Scholar 

  15. Hubalewska-Dydejczyk A, Signore A, de Jong M, Dierckx RA, Buscombe J, van de Wiele C, editors. Somatostatin analogues: from research to clinical practice. Hoboken: Wiley; 2015.

    Google Scholar 

  16. Günther T, Tulipano G, Dournaud P, et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacol Rev. 2018;70:763–835. https://doi.org/10.1124/pr.117.015388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel RC, Kumar U, Lamb DC, et al. Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc Natl Acad Sci U S A. 2002;99:3294–9. https://doi.org/10.1073/pnas.042705099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reubi JC, Schonbrunn A. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol Sci. 2013;34:676–88. https://doi.org/10.1016/j.tips.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  19. Reubi JC, Waser B, Schaer J-C, et al. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28:836–46. https://doi.org/10.1007/s002590100541.

    Article  CAS  PubMed  Google Scholar 

  20. Csaba Z, Peineau S, Dournaud P. Molecular mechanisms of somatostatin receptor trafficking. J Mol Endocrinol. 2012;48:R1–R12.

    Article  CAS  Google Scholar 

  21. Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58:61S–6S. https://doi.org/10.2967/jnumed.116.186783.

    Article  CAS  PubMed  Google Scholar 

  22. Hofland LJ, Lamberts SWJ. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev. 2003;24:28–47. https://doi.org/10.1210/er.2000-0001.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Kim K-M. Multifactorial regulation of G protein-coupled receptor endocytosis. Biomol Ther. 2017;25:26–43.

    Article  CAS  Google Scholar 

  24. Hanyaloglu AC, von Zastrow M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol. 2008;48:537–68. https://doi.org/10.1146/annurev.pharmtox.48.113006.

    Article  CAS  PubMed  Google Scholar 

  25. Breeman WA, de Jong M, Kwekkeboom DJ, et al. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med. 2001;28:1421–9. https://doi.org/10.1007/s002590100502.

    Article  CAS  PubMed  Google Scholar 

  26. Fani M, Braun F, Waser B, et al. Unexpected sensitivity of sst2 antagonists to N-terminal radiometal modifications. J Nucl Med. 2012;53:1481–9. https://doi.org/10.2967/jnumed.112.102764.

    Article  CAS  PubMed  Google Scholar 

  27. Oshima N, Akizawa H, Kawashima H, et al. Redesign of negatively charged 111In-DTPA-octreotide derivative to reduce renal radioactivity. Nucl Med Biol. 2017;48:16–25.

    Article  CAS  Google Scholar 

  28. Melis M, Krenning EP, Bernard BF, et al. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med Mol Imaging. 2005;32:1136–43. https://doi.org/10.1007/s00259-005-1793-0.

    Article  CAS  PubMed  Google Scholar 

  29. Fani M, Del Pozzo L, Abiraj K, et al. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J Nucl Med. 2011;52:1110–8. https://doi.org/10.2967/jnumed.111.087999.

    Article  CAS  PubMed  Google Scholar 

  30. Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A. 2006;103:16436–41. https://doi.org/10.1073/pnas.0607761103.

  31. Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38:358–66. https://doi.org/10.1053/j.semnuclmed.2008.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kassis AI, Adelstein SJ. Considerations in the selection of radionuclides for cancer therapy. In: Welch MJ, Revanly CS, editors. Handbook of radiopharmaceuticals: Wiley; 2005. p. 767–93. https://doi.org/10.1002/0470846380.ch27.

    Chapter  Google Scholar 

  33. Howel RW. Auger processes in the 21st century. Int J Radiat Biol. 2008;84:959–75. https://doi.org/10.1080/09553000802395527.

    Article  CAS  Google Scholar 

  34. Duparc OH. Pierre Auger-Lise Meitner: comparative contributions to the Auger effect. Int J Mat Res (formerly Z Metallkd). 2009;100:1162–6. https://doi.org/10.3139/146.110163.

    Article  CAS  Google Scholar 

  35. Feinendegen LE. Biological damage from the Auger effect, possible benefits. Radiat Environ Biophys. 1975;12:85–99.

    Article  CAS  Google Scholar 

  36. Howell RW. Radiation spectra for Auger-electron emitting radionuclides: report No. 2 of AAPM Nuclear Medicine Task Group No. 6. Med Phys. 1992;19:1371–83. https://doi.org/10.1118/1.596927.

    Article  CAS  PubMed  Google Scholar 

  37. Lee BQ, Kibédi T, Stuchbery AE, et al. Atomic radiations in the decay of medical radioisotopes: a physics perspective. Comput Math Methods Med. 2012;2012:651475, 14 p. https://doi.org/10.1155/2012/651475.

  38. McMillan DD, Maeda J, Bell JJ, et al. Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission. J Radiat Res. 2015;56:784–91. https://doi.org/10.1093/jrr/rrv042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cornelissen B, Vallis KA. Targeting the nucleus: an overview of Auger-electron radionuclide therapy. Curr Drug Discov Technol. 2010;7:263–79. https://doi.org/10.2174/157016310793360657.

    Article  CAS  PubMed  Google Scholar 

  40. Falzone N, Cornelissen B, Vallis KA. Auger emitting radiopharmaceuticals for cancer therapy. In: Gómez-Tejedor G, Fuss M, editors. Radiation damage in biomolecular systems. Biological and medical physics, biomedical engineering. Dordrecht: Springer; 2012.

    Google Scholar 

  41. Piroozfar B, Raisali G, Alirezapour B, et al. The effect of 111In radionuclide distance and Auger electron energy on direct induction of DNA double strand breaks: a Monte Carlo study using Geant4-toolkit. Int J Radiat Biol. 2018;94(4):385–93. https://doi.org/10.1080/09553002.2018.1440329.

    Article  CAS  PubMed  Google Scholar 

  42. Bin Othman M, Mitry NR, Lewington VJ, et al. Re-assessing gallium-67 as a therapeutic radionuclide. Nucl Med Biol. 2017;46:12–8. https://doi.org/10.1016/j.nucmedbio.2016.10.008.

    Article  CAS  Google Scholar 

  43. Thisgaard H. Accelerator based production of Auger-electron-emitting isotopes for radionuclide therapy. Dissertation, Risø National Laboratory for Sustainable Energy, Technical University of Denmark. 2008.

    Google Scholar 

  44. Thisgaard H, Jensen M. Sb-119: a potent Auger emitter for targeted radionuclide therapy. Med Phys. 2008;35:3839–46. https://doi.org/10.1118/1.2963993.

    Article  CAS  PubMed  Google Scholar 

  45. Stepanek J, Larsson B, Weinreich R. Auger-electron spectra of radionuclides for therapy and diagnostics. Acta Oncol. 1996;35:863–8. https://doi.org/10.3109/02841869609104038.

    Article  CAS  PubMed  Google Scholar 

  46. Fisher DR, Shen S, Meredith RF. MIRD dose estimate report No. 20: radiation absorbed-dose estimates for 111In- and 90Y-ibritumomab tiuxetan. J Nucl Med. 2009;50:644–52. https://doi.org/10.2967/jnumed.108.057331.

    Article  CAS  PubMed  Google Scholar 

  47. Lahiri S, Maiti M, Ghosh K. Production and separation of 111In: an important radionuclide in life sciences: a mini review. J Radioanal Nucl Chem. 2012;297:309–18. https://doi.org/10.1007/s10967-012-2344-3.

    Article  CAS  Google Scholar 

  48. Schlyer DJ. Production of radionuclides in accelerators. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals: radiochemistry and applications. Hoboken: Wiley; 2003. p. 1–71.

    Google Scholar 

  49. Kocher DC. Radioactive decay data tables. DOE/TIC-11026, 115. 1981.

    Google Scholar 

  50. Tuck DG. Critical survey of stability constants of complexes of indium. Pure Appl Chem. 1983;55:1477–528.

    Article  CAS  Google Scholar 

  51. Anderson CJ, Welch MJ. Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem Rev. 1999;99:2219–34. https://doi.org/10.1021/cr980451q.

    Article  CAS  PubMed  Google Scholar 

  52. Dilworth JR, Pascu SI. The radiopharmaceutical chemistry of gallium (III) and indium (III) for SPECT imaging. In: Long N, Wong W-T, editors. The chemistry of molecular imaging. 1st ed: Wiley; 2015. p. 165–76. https://doi.org/10.2967/jnumed.110.075101.

    Chapter  Google Scholar 

  53. Harrison RC. Indium chemistry in radiopharmaceutical development. In: Cox PH, Mather SJ, Sampson CB, Lazarus CR, editors. Progress in radiopharmacy. Leiden: Martinus Nijhoff Publishers; 1986. p. 173–96.

    Chapter  Google Scholar 

  54. Liu S. The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem Soc Rev. 2004;33:445–61. https://doi.org/10.1039/b309961j.

    Article  CAS  PubMed  Google Scholar 

  55. Martell AE, Hancock RD. Factors governing the formation of complexes with unidentate ligands in aqueous solution. Some general considerations. In: Metal complexes in aqueous solutions. Springer US; 1996. p. 15–61.

    Google Scholar 

  56. Vegt E, de Jong M, Wetzels JFM, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51:1049–58. https://doi.org/10.2967/jnumed.110.075101.

    Article  CAS  PubMed  Google Scholar 

  57. Deferm C, Onghena B, Hoogerstraete V, et al. Speciation of indium (III) chloro complexes in the solvent extraction process from chloride aqueous solutions to ionic liquids. Dalton Trans. 2017;46:4412–21. https://doi.org/10.1039/c7dt00618g.

    Article  CAS  PubMed  Google Scholar 

  58. Ferri D. Complex formation equilibriums between indium (III) and chloride ions. Acta Chem Scand. 1972;26:733–46.

    Article  CAS  Google Scholar 

  59. Harris WR, Chen Y, Wein K. Equilibrium constants for the binding of indium (III) to human serum transferrin. Inorg Chem. 1994;33:4991–8.

    Article  CAS  Google Scholar 

  60. Yeh SM, Meares CF, Goodwin DA. Decomposition rates of radiopharmaceutical indium chelates in serum. J Radioanal Chem. 1979;53:327–36. https://doi.org/10.1007/bf02517931.

    Article  CAS  Google Scholar 

  61. Layne WW, Hnatowich DJ, Doherty PW, et al. Evaluation of the viability of In-111-labeled DTPA coupled to fibrinogen. J Nucl Med. 1982;23:627–30.

    CAS  PubMed  Google Scholar 

  62. Hsieh W-Y, Liu S. Synthesis, characterization, and structures of indium In(DTPA-BA2) and yttrium Y(DTPA-BA2)(CH3OH) complexes (BA benzylamine): models for 111In- and 90Y-labeled DTPA-biomolecule conjugates. Inorg Chem. 2004;43:6006–14.

    Article  CAS  Google Scholar 

  63. Narita H, Tanaka M, Shiwaku H, et al. Structural properties of the inner coordination sphere of indium chloride complexes in organic and aqueous solutions. Dalton Trans. 2014;43:1630–5. https://doi.org/10.1039/c3dt52474d.

    Article  CAS  PubMed  Google Scholar 

  64. Sun Y, Motekaitis RJ, Martell AE, et al. N,N′-bis(2-mercaptoethyl)ethylenediamine-N,N′-diacetic acid; an effective ligand for indium(III). Inorgan Chim Acta. 1995;228:77–9. https://doi.org/10.1016/0020-1693(94)04392-9.

    Article  CAS  Google Scholar 

  65. Ivanova VY, Chevela VV, Bezryadin SG. Complex formation of indium (III) with citric acid in aqueous solution. Russ Chem Bull. 2015;64:1842–9. https://doi.org/10.1007/s11172-015-1082-4.

    Article  CAS  Google Scholar 

  66. Silva AMN, Kong X, Parkin MC, et al. Iron (III) citrate speciation in aqueous solution. Dalton Trans. 2009;0:8616–25. https://doi.org/10.1039/b910970f.

    Article  CAS  Google Scholar 

  67. Thompson LCA, Pacer R. The solubility of indium hydroxide in acidic and basic media at 25°C. J Inorg Nucl Chem. 1963;25:1041–4. https://doi.org/10.1016/0022-1902(63)80039-1.

    Article  CAS  Google Scholar 

  68. Maloney TJ, Camp AE Jr. Purification of indium 111. US Patent 6,162,648, 19 Dec 2000. 2000.

    Google Scholar 

  69. Brom M, Joosten L, Oyen WJG, et al. Improved labelling of DTPA- and DOTA conjugated peptides and antibodies with 111In in HEPES and MES buffer. EJNMMI Res. 2012;2:4. https://doi.org/10.1186/2191-219X-2-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Balon HR, Brown TLY, Goldsmith SJ, et al. The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol. 2011;39:317–24.

    Article  Google Scholar 

  71. Limouris GS, Chatziioannou A, Kontogeorgakos D, et al. Selective hepatic arterial infusion of In-111-DTPA-Phe1-octreotide in neuro-endocrine liver metastases. Eur J Nucl Med Mol Imaging. 2008;35:1827–37.

    Article  CAS  Google Scholar 

  72. OctreoScan™ package insert, Petten, The Netherlands, Mallinckrodt Medical B.V. September 2017 (revision).

    Google Scholar 

  73. Bakker WH, Albert R, Bruns C, et al. [111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation. Life Sci. 1991;49:1583–91. https://doi.org/10.1016/0024-3205(91)90052-d.

    Article  CAS  PubMed  Google Scholar 

  74. Maecke HR, Riesen A, Ritter W. The molecular structure of indium-DTPA. J Nucl Med. 1989;30:1235–1.

    CAS  PubMed  Google Scholar 

  75. Siddons CJ. Metal ion complexing properties of amide donating ligands. Dissertation, University of North Carolina at Wilmington. 2004.

    Google Scholar 

  76. Bavelaar BM, Lee BQ, Gill MR, et al. Subcellular targeting of theranostic radionuclides. Front Pharmacol. 2018;9:996. https://doi.org/10.3389/fphar.2018.00996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Capello A, Krenning EP, Wout AP, et al. Peptide receptor radionuclide therapy in vitro using [111In-DTPA0]-octreotide. J Nucl Med. 2003;44:98–104.

    CAS  PubMed  Google Scholar 

  78. Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24:389–427. https://doi.org/10.1210/er.2002-0007.

    Article  CAS  PubMed  Google Scholar 

  79. Reubi JC, Schär J-C, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82. https://doi.org/10.1007/s002590050034.

    Article  CAS  PubMed  Google Scholar 

  80. van Essen M, Sundin A, Krenning EP. Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol. 2014;10:102–14. https://doi.org/10.1038/nrendo.2013.246.

    Article  CAS  PubMed  Google Scholar 

  81. Mariani G, Bodei L, Adelstein SJ, et al. Emerging roles for radiometabolic therapy of tumors based on auger electron emission. J Nucl Med. 2000;41:1519–21.

    CAS  PubMed  Google Scholar 

  82. Eckelman WC, Frank JA, Brechbiel M. Theory and practice of imaging saturable binding sites. Invest Radiol. 2002;37:101–6.

    Article  Google Scholar 

  83. Gokce A, Nakamura RM, Tubis M, et al. Synthesis of indium-labeled antibody-chelate conjugates for radioassays. Int J Nucl Med Biol. 1982;9:85–95. https://doi.org/10.1016/0047-0740(82)90034-1.

    Article  CAS  PubMed  Google Scholar 

  84. Jonard P, Jamar F, Walrand S. Effect of peptide amount on biodistribution of Y-86-DOTA-Tyr3-octreotide (SMT487). J Nucl Med. 2000;41:260 p.

    Google Scholar 

  85. Breeman DWAP, Kwekkeboom DJ, Kooij PPM, et al. Effect of dose and specific activity on tissue, distribution of indium-111-pentetreotide in rats. J Nucl Med. 1995;36:623–7.

    CAS  PubMed  Google Scholar 

  86. Wout AP, Breeman D, Kwekkeboom J, et al. Effect of dose and specific activity on tissue, distribution of indium-111-pentetreotide in rats. J Nucl Med. 1995;36:623–7.

    Google Scholar 

  87. Lewis JS, Lewis MR, Cutler PD, et al. Radiotherapy and dosimetry of 64Cu-TETA-Tyr3-octreotate in a somatostatin receptor-positive, tumor-bearing rat model. Clin Cancer Res. 1999;11:3608–16. https://doi.org/10.1158/1078-0432.CCR-04-1084.

    Article  Google Scholar 

  88. Kwekkeboom J, Bakker DH, Kooij WP, et al. [177Lu-DOTA0-Tyr3]-octreotate: comparison with [111In-DTPA0]-octreotide in patients. Eur J Nucl Med. 2001;28:1319–25.

    Article  CAS  Google Scholar 

  89. Akizawa H, Arano Y, Mifune M. Effect of molecular charges on renal uptake of 111In-DTPA-conjugated peptides. Nucl Med Biol. 2001;28:761–8.

    Article  CAS  Google Scholar 

  90. Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol. 2002;3:258–67. https://doi.org/10.1038/nrm778.

    Article  CAS  Google Scholar 

  91. De Jong M, Barone R, Krenning E, et al. Megalin is essential for renal proximal tubule reabsorption of [111In-DTPA0]-Octreotide. J Nucl Med. 2005;46:1696–700.

    PubMed  Google Scholar 

  92. Dong C, Zhao H, Yang S, et al. 99mTc-labeled dimeric octreotide peptide: a radiotracer with high tumor uptake for single-photon emission computed tomography imaging of somatostatin receptor subtype 2-positive tumors. Mol Pharm. 2013;10:2925–33. https://doi.org/10.1021/mp400040z.

    Article  CAS  PubMed  Google Scholar 

  93. Chen P, Wang J, Hope K, et al. Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med. 2006;47:827–36.

    CAS  PubMed  Google Scholar 

  94. Ginj M, Hinni K, Tschumi S, et al. Trifunctional somatostatin-based derivatives designed for targeted radiotherapy using Auger electron emitters. J Nucl Med. 2005;46:2097–103.

    CAS  PubMed  Google Scholar 

  95. Hillyar C. Auger electron radionuclide therapy utilizing F3 peptide to target the nucleolus. Dissertation, Jesus College, University of Oxford. 2015.

    Google Scholar 

  96. Cornelissen B, Able S, Kersemans V, et al. Nanographene oxide-based radioimmunoconstructs for in vivo targeting and SPECT imaging of HER2-positive tumors. Biomaterials. 2013;34:1146–54. https://doi.org/10.1016/j.biomaterials.2012.10.054.

    Article  CAS  PubMed  Google Scholar 

  97. Kersemans V, Kersemans K, Cornelissen B. Cell penetrating peptides for in vivo molecular imaging applications. Curr Pharm Des. 2008;14:2415–27. https://doi.org/10.2174/138161208785777432.

    Article  CAS  PubMed  Google Scholar 

  98. Nayak TK, Atcher RW, Prossnitz ER, et al. Enhancement of somatostatin-receptor-targeted 177Lu-[DOTA0-Tyr3]-octreotide therapy by gemcitabine pretreatment-mediated receptor uptake, up-regulation and cell cycle modulation. Nucl Med Biol. 2008;35:673–8. https://doi.org/10.1016/j.nucmedbio.2008.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zanglis, A. (2021). [111In-DTPA0-D-Phe1]-Octreotide: The Ligand—The Receptor—The Label. In: Limouris, G.S. (eds) Liver Intra-arterial PRRT with 111In-Octreotide. Springer, Cham. https://doi.org/10.1007/978-3-030-70773-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70773-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70772-9

  • Online ISBN: 978-3-030-70773-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics