Skip to main content

From Substitution to Regeneration: The Tridimensional Interplay Between Cells and Biomaterials

  • Chapter
  • First Online:
Women in 3D Printing

Part of the book series: Women in Engineering and Science ((WES))

  • 418 Accesses

Abstract

Advancements in technology allow for longer lifespan, creating the need for improved medical devices, especially in orthopedics. Using technologies like additive manufacturing (AM), it is possible to achieve a high degree of personalization, namely patient-specific implants with complex shapes and controlled porous structures. This process not only foments the creativity, but it also promotes the research of new biomaterials, and the optimisation of existing processes and techniques. During my PhD studies, I aimed to exploit AM for the development of novel materials and devices within bone regenerative medicine. I have investigated the use of Apatite-Wollastonite (AW), a bioactive glass-ceramic, as feedstock for AM techniques. From doping of AW powders with alumina to the use of the AW precursor glass as a filler for polymer-ceramic biocomposites, the goal was always to obtain a device able to improve osseointegration. A material like AW can be easily tuned, allowing for a high degree of freedom composition-wise. Two AM techniques were applied, binder jetting and fused filament fabrication, to create a load bearing device and scaffolds for critical-size defects, respectively. The choice of the developed materials and techniques envisioned the fast translation into an industrial context, and their easy commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fujita, H., Iida, H., Ido, K., Matsuda, Y.: Porous apatite-wollastonite glass-ceramic as an intramedullary plug. J. Bone Jt. Surg. 82, 614–618 (2000)

    Article  Google Scholar 

  2. Wang, W., Yeung, K.W.K.: Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2, 224–247 (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  Google Scholar 

  3. Shah, F.A., Thomsen, P., Palmquist, A.: Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 84, 1–15 (2019). https://doi.org/10.1016/j.actbio.2018.11.018

    Article  Google Scholar 

  4. Zhang, X.Z., Leary, M., Tang, H.P., et al.: Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Curr. Opin. Solid State Mater. Sci. 22, 75–99 (2018). https://doi.org/10.1016/j.cossms.2018.05.002

    Article  Google Scholar 

  5. Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E.: Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, Amsterdam (2004)

    Google Scholar 

  6. Butscher, A., Bohner, M., Hofmann, S., et al.: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 7, 907–920 (2011). https://doi.org/10.1016/j.actbio.2010.09.039

    Article  Google Scholar 

  7. Wopenka, B., Pasteris, J.D.: A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C. 25, 131–143 (2005). https://doi.org/10.1016/j.msec.2005.01.008

    Article  Google Scholar 

  8. Xiang, Z., Spector, M.: Biocompatibility of materials. In: Encyclopedia of Medical Devices and Instrumentation. John Wiley & Sons, Inc., Hoboken (2006)

    Google Scholar 

  9. Gomes, C.M., Zocca, A., Guenster, J.: Designing apatite-wollastonite (AW) porous scaffolds by powder-based 3D printing. (2015). https://doi.org/10.1201/b15961-30

  10. Zwingenberger, S., Nich, C., Valladares, R.D., et al.: Recommendations and considerations for the use of biologics in orthopedic surgery. BioDrugs. 26, 245–256 (2012). https://doi.org/10.1007/BF03261883

    Article  Google Scholar 

  11. Kokubo, T., Kim, H.M., Kawashita, M.: Novel bioactive materials with different mechanical properties. Biomaterials. 24, 2161–2175 (2003). https://doi.org/10.1016/S0142-9612(03)00044-9

    Article  Google Scholar 

  12. Gomes, C.M., Zocca, A., Guenster, J., et al.: Designing apatite-wollastonite (AW) porous scaffolds by powder-based 3D printing. In: High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, pp. 159–163. Taylor and Francis, Hoboken/London (2014). https://doi.org/10.1201/b15961-30

    Chapter  Google Scholar 

  13. Ohtsuki, C., Kamitakahara, M., Miyazaki, T.: Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J. R. Soc. Interface. 6(Suppl 3), S349–S360 (2009). https://doi.org/10.1098/rsif.2008.0419.focus

    Article  Google Scholar 

  14. Kokubo, T., Ito, S., Shigematsu, M., et al.: Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application. J. Mater. Sci. 20, 2001–2004 (1985). https://doi.org/10.1007/BF01112282

    Article  Google Scholar 

  15. Duminis, T., Shahid, S., Hill, R.G.: Apatite glass-ceramics: a review. Front. Mater. 3, 1–15 (2017). https://doi.org/10.3389/fmats.2016.00059

    Article  Google Scholar 

  16. Navarro, M., Michiardi, A., Castan, O., Planell, J.A.: Biomaterials in orthopaedics. J. R. Soc. Interface. 5, 1137–1158 (2008). https://doi.org/10.1098/rsif.2008.0151

    Article  Google Scholar 

  17. Melo, P., Ferreira, A.-M., Waldron, K., et al.: Osteoinduction of 3D printed particulate and short-fibre reinforced composites produced using PLLA and apatite-wollastonite. Compos. Sci. Technol. 184, 107834 (2019). https://doi.org/10.1016/j.compscitech.2019.107834

    Article  Google Scholar 

  18. Melo, P., Kotlarz, M., Marshall, M., et al.: Effects of alumina on the thermal processing of apatite-wollastonite: changes in sintering, microstructure and crystallinity of compressed pellets. J. Eur. Ceram. Soc. 40, 6107–6113 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.071

    Article  Google Scholar 

  19. Kokubo, T.: Bioceramics and their clinical applications. Elsevier. ISBN 1845694 (2008)

    Google Scholar 

  20. Alharbi, N.H.: Indirect Three Dimensional Printing of Apatite-Wollastonite Structures for Biomedical Applications. Newcastle University, Newcastle upon Tyne (2016)

    Google Scholar 

  21. Abou Neel, E.A., Chrzanowski, W., Pickup, D.M., et al.: Structure and properties of strontium-doped phosphate-based glasses. J. R. Soc. Interface. 6, 435–446 (2009). https://doi.org/10.1098/rsif.2008.0348

    Article  Google Scholar 

  22. Miola, M., Brovarone, C.V., Maina, G., et al.: In vitro study of manganese-doped bioactive glasses for bone regeneration. Korean J. Couns. Psychother. 38, 107–118 (2014). https://doi.org/10.1016/j.msec.2014.01.045

    Article  Google Scholar 

  23. Murphy, S., Boyd, D., Moane, S., Bennett, M.: The effect of composition on ion release from Ca-Sr-Na-Zn-Si glass bone grafts. J. Mater. Sci. Mater. Med. 20, 2207–2214 (2009). https://doi.org/10.1007/s10856-009-3789-y

    Article  Google Scholar 

  24. Filho, O.P., La Torre, G.P., Hench, L.L.: Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 30, 509–514 (1996). https://doi.org/10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T

    Article  Google Scholar 

  25. Massera, J., Mayran, M., Rocherullé, J., Hupa, L.: Crystallization behavior of phosphate glasses and its impact on the glasses’ bioactivity. J. Mater. Sci. 50, 3091–3102 (2015). https://doi.org/10.1007/s10853-015-8869-4

    Article  Google Scholar 

  26. Baino, F., Marshall, M., Kirk, N., Vitale-brovarone, C.: Design, selection and characterization of novel glasses and glass-ceramics for use in prosthetic applications. Ceram. Int. 42, 1482–1491 (2016). https://doi.org/10.1016/j.ceramint.2015.09.094

    Article  Google Scholar 

  27. Butscher, A., Bohner, M., Doebelin, N., et al.: Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomater. 9, 5369–5378 (2013). https://doi.org/10.1016/j.actbio.2012.10.009

    Article  Google Scholar 

  28. Melo, P.: Additive Manufacturing of Bioceramic and Biocomposite Devices for Bone Repair. Newcastle University, Newcastle upon Tyne (2019)

    Google Scholar 

  29. Freiman, S.W., Hench, L.L.: Effect of crystallization on the mechanical properties of Li2O-SiO2 glass-ceramics. J. Am. Ceram. Soc. 55, 86–90 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11216.x

    Article  Google Scholar 

  30. El-Kheshen, A.A., Khaliafa, F.A., Saad, E.A., Elwan, R.L.: Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceram. Int. 34, 1667–1673 (2008). https://doi.org/10.1016/j.ceramint.2007.05.016

    Article  Google Scholar 

  31. Juhasz, J.A., Best, S.M., Brooks, R., et al.: Mechanical properties of glass-ceramic A–W-polyethylene composites: effect of filler content and particle size. Biomaterials. 25, 949–955 (2004). https://doi.org/10.1016/J.BIOMATERIALS.2003.07.005

    Article  Google Scholar 

  32. Winkler, T., Sass, F.A., Duda, G.N., Schmidt-Bleek, K.: A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering. Bone Jt. Res. 7, 232–243 (2018). https://doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1

    Article  Google Scholar 

  33. Boccaccini, A., Maquet, V.: Bioresorbable and bioactive polymer/bioglass composites with tailored pore structure for tissue engineering applications. Compos. Sci. Technol. 63(16), 2417–2429 (2003)

    Article  Google Scholar 

  34. Wang, M.: Developing bioactive composite materials for tissue replacement. Biomaterials. 24, 2133–2151 (2003). https://doi.org/10.1016/S0142-9612(03)00037-1

    Article  Google Scholar 

  35. Ahmed, I., Jones, I.A., Parsons, A.J., et al.: Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture. J. Mater. Sci. Mater. Med. 22, 1825–1834 (2011). https://doi.org/10.1007/s10856-011-4361-0

    Article  Google Scholar 

  36. Yasa, E., Ersoy, K.: Additive manufacturing of polymer matrix composites. Composites, Aircraft Technology, Melih Cemal KuÅŸhan, IntechOpen (2018). https://doi.org/10.5772/intechopen.75628. Available from: https://www.intechopen.com/books/aircraft-technology/additive-manufacturing-of-polymer-matrixcomposites

  37. Felfel, R.M., Ahmed, I., Parsons, A.J., et al.: Cytocompatibility, degradation, mechanical property retention and ion release profiles for phosphate glass fibre reinforced composite rods. Mater. Sci. Eng. C. 33, 1914–1924 (2013). https://doi.org/10.1016/j.msec.2012.12.089

    Article  Google Scholar 

  38. Melo, P., Tarrant, E., Swift, T., et al.: Short phosphate glass fiber – PLLA composite to promote bone mineralization. Mater. Sci. Eng. C. 104, 109929 (2019). https://doi.org/10.1016/j.msec.2019.109929

  39. Roddy, E., Debaun, M.R., Daoud, A., et al.: Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 28, 351–362 (2018). https://doi.org/10.1007/s00590-017-2063-0

    Article  Google Scholar 

  40. Burr, D.B., Gallant, M.A.: Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665 (2012)

    Article  Google Scholar 

  41. Rodrigues, N.: Materials Processing and Physical Characterisation of a Hybrid Composite Structure for Bone Replacement Applications. Newcastle University, Newcastle upon Tyne (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melo, P. (2021). From Substitution to Regeneration: The Tridimensional Interplay Between Cells and Biomaterials. In: DelVecchio, S.M. (eds) Women in 3D Printing. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-70736-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70736-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70735-4

  • Online ISBN: 978-3-030-70736-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics