Skip to main content

Cellular Interaction with PLA Biomaterial: Scanning Electron Microscopy Analysis

  • Conference paper
  • First Online:
XXVII Brazilian Congress on Biomedical Engineering (CBEB 2020)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 83))

Included in the following conference series:

  • 82 Accesses

Abstract

Polymeric biomaterials are used in tissue repair due to characteristics as biocompatibility and cell interaction. In the category of synthetic polymers, poly lactic acid (PLA) is especially used in several clinical applications. This biomaterial can be prepared in the form of dense and porous membranes, in order to characterize the interaction with Vero cells in culture, using scanning electron microscopy (SEM). For this purpose, dense and porous PLA membranes were previously prepared, sterilized by ultraviolet light (UV) and used as a substrate for cultivation of Vero cells, for periods of 2 h and 7 days. To observe the cell interaction with the membranes, different methodologies for processing the samples for observation by SEM were considered, and a comparative analysis of the results was performed. There was no significant difference in cell morphology comparing samples with and without osmium tetroxide, however samples that underwent drying at a critical point had better preservation of cell morphology compared to samples in chemical drying. Osmium tetroxide is not a major factor in the processing of cells for SEM, and that the type of drying is the factor that most affects cell morphology in this process. It was possible to observe cell adhesion after 2 h of culture, with morphological changes such as cytoplasmic transition to a more flat aspect being more characteristic for 7 days of culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Williams DF (1987) Definition in biomaterials, consensus conference ESB

    Google Scholar 

  2. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  Google Scholar 

  3. Barbanti SH, Zavalia CAC (2005) Polímeros bioreabsorvíveis na engenharia de tecidos. Polímeros: Ciência e Tecnologia 15:13–21

    Google Scholar 

  4. Oliveira CS, Nascimento M, Junior EA et al (2010) Avanços e aplicações da bioengenharia tecidual. Ciências Médicas e Biológicas 9:28–36

    Article  Google Scholar 

  5. Jahno, VD, Ligabue R, Einloft, S, Ribeiro, GBM et al (2006) Síntese e caracterização do poli(ácido l-láctico) e sua avaliação em culturas de osteoblastos humanos. Cong Bras Eng Ciênc Mat 7837–7847

    Google Scholar 

  6. Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432–446

    Article  Google Scholar 

  7. Danisovic L, Varga I, Zamborsky R, Böhmer D (2012) The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Bio Med 237:10–17

    Article  Google Scholar 

  8. Jafari M, Paknejad Z, Rad MR et al (2017) Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater 105:431–459

    Article  Google Scholar 

  9. International Standarts Organization. ISO 10993-5 (2009b) Biological evaluation of medical devices—Part 5: tests for in vitro cytotoxicity, p 34

    Google Scholar 

  10. Dewez JL, Lhoest JB, Detrait E et al (1998) Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns. Biomaterials 19:1441–1445

    Article  Google Scholar 

  11. Wang X, Lou T, Zhao W et al (2016) The effect of fiber size and pore size on cell proliferation and infiltration in PLA scaffolds on bone tissue engineering. J Biomater Appl 30:1545–1551

    Article  Google Scholar 

  12. Zeltinger J, Sherwood JK, Graham DA et al (2004) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572

    Article  Google Scholar 

  13. Lombello CB, Malmonge SM, Wada ML (2000) Morphology of fibroblastic cells cultured on poly (HEMA-co-AA) substrates. Cytobios 101:115–122

    Google Scholar 

  14. Santos Jr AR, Wada MLF (2007) Polímeros Biorreabsorvíveis como Substrato para Cultura de Células e Engenharia Tecidual. Polímeros: Ciênc Tecnol 17:308–317

    Google Scholar 

  15. Ammerman NC, Beier-Sexton M, Aad AF (2008) Growth and maintenance of Vero cell lines. Curr Prot Microb 11:4E:A.4E.1–A.4E.7

    Google Scholar 

  16. Nascimento MHM, Ferreira M, Malmonge SM, Lombello CB (2017) Evaluation of cell interaction with polymeric biomaterials based on hyaluronic acid and chitosan. J Mater Sci Mater Med 28(5)

    Google Scholar 

  17. Zhu WJ (2018) Preparation and observation methods can produce misleading artefacts in human sperm ultrastructural morphology. Andrologia e13043. https://doi.org/10.1111/and.13043

  18. Impe J, Smet C, Tiwari B et al (2018) State of the art of nonthermal and thermal processing for inactivation of micro-organisms. J Appl Microbiol 125:16–35

    Article  Google Scholar 

  19. Nascimento, MHM, Lombello CB. (2016) Hidrogéis a base de ácido hialurônico e quitosana para engenharia de tecido cartilaginoso. Polímeros: Ciênc Tecnol 26:360–370

    Google Scholar 

  20. Ferraraz DC, Tatsui NH, Rodrigues LR, Lombello CB (2019) Platelet-rich plasma as supplement and scaffold for the culture of Vero cell line. Res Biomed Eng 35:1–9

    Article  Google Scholar 

  21. Zhang W, Soffe R, Nahavandi S, Shukla R, Khoshmanesh K (2014) High resolution scanning electron microscopy of cells using dielectrophoresis. PLoS ONE 9(8):

    Article  Google Scholar 

  22. Amaducci MRL (2007) Efeitos do campo eletromagnético em células e bactérias. Dissertação(mestrado), UNICAMP, Campinas, SP, p. 102

    Google Scholar 

  23. Wisse E, Braet F, Duimel H, Vreuls C et al (2010) Fixation methods for electron microscopy of human and other liver. World J Gastroenterol 16:2851–2866

    Article  Google Scholar 

  24. Barth OM, Silva MAN, Barreto-Vieira DF (2016) Low impact to fixed cell processing aiming transmission electron microscopy. Mem Inst Oswaldo Cruz 111:411–413

    Article  Google Scholar 

  25. Carr J, Anderson R, Favero M (1996) Comparison of chemical dehydration and critical point drying for the stabilization and visualization of aging biofilm present on interior surfaces of PVC distribution pipe. J App Bacteriol 80:225–232

    Article  Google Scholar 

  26. Barbieri DM, Fernandes T, Capelo O et al (2016) Método rápido, de baixo custo e reprodutível para secagem de biofilme bacteriano analisado em MEV. II Cong Paran Microbiol, Londrina

    Google Scholar 

  27. Glauert AM (1975) Practical methods in electron microscopy. Vol III: fixation, dehydration and embedding of biological specimens. North-Holland Publishing Company, pp 1–207

    Google Scholar 

  28. Lombello CB. (2018) Capítulo 6: Microscopia eletrônica para biologia celular. In: Santos Jr AR, Lombello CB (eds) Biologia celular: uma abordagem prática do ensino. EduFABC

    Google Scholar 

  29. Heckman C, Kanagasundaram S, Cayer M, Paige J (2007) Preparation of cultured cells for scanning electron microscope. Center for Microscopy and Microanalysis. Protocol Exchange. https://doi.org/10.1038/nprot.2007.504

  30. Bray D (2000) Critical point drying of biological specimens for scanning electron microscopy. In: Williams JR, Clifford AA (eds) Supercritical fluid methods and protocols. methods in biotechnologyTM, vol 13. Humana Press

    Google Scholar 

  31. Thevenot P, Tang L, HU W (2008) Curr Top Med Chem 8:270–280

    Google Scholar 

  32. Muscariello L, Rosso F, Marino G et al (2005) A critical overview of ESEM applications in the biological field. J Cell Physiol 205:328–334

    Article  Google Scholar 

Download references

Acknowledgements

We thank the UFABC for the research development structure and the Multiuser Centers (CEM-UAFBC), for the samples preparation and SEM analysis.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazzaron, L.H.S., Lombello, C.B. (2022). Cellular Interaction with PLA Biomaterial: Scanning Electron Microscopy Analysis. In: Bastos-Filho, T.F., de Oliveira Caldeira, E.M., Frizera-Neto, A. (eds) XXVII Brazilian Congress on Biomedical Engineering. CBEB 2020. IFMBE Proceedings, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-030-70601-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70601-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70600-5

  • Online ISBN: 978-3-030-70601-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics