Skip to main content

Effect of Pulsed Electric Fields on Food Quality

  • Chapter
  • First Online:
Pulsed Electric Fields Technology for the Food Industry

Abstract

Pulsed electric fields (PEF) represent an innovative strategy for improving quality of food products in a sustainable way. PEF can be either applied with the aim of inactivating microorganisms, as a substitute for conventional thermal preservation treatments, or as a way to assist industrial food processes, e.g. to increase yields in extractive operations. In any of these applications, PEF treatments stand out as a valuable processing alternative for obtaining high-quality products with an excellent preservation of minor food constituents and food quality properties. The soundest applications of PEF and their effects on quality parameters are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

E :

Electric field strength

GC/MS:

Gas chromatography/mass spectrometry

HIPEF:

High-intensity pulsed electric fields

LIPEF:

Low-intensity pulsed electric fields

MIPEF:

Moderate-intensity pulsed electric fields

PEF:

Pulsed electric fields

PG:

Polygalacturonase

PME:

Pectin methylesterase

POD:

Peroxidase

PPO:

Polyphenoloxidase

TBARS:

Thiobarbituric acid reactive substances

References

  • Abenoza M, Benito M, Saldaña G, Álvarez I, Raso J, Sánchez-Gimeno AC (2013) Effects of pulsed electric field on yield extraction and quality of olive oil. Food Bioprocess Technol 6:1367–1373

    Article  Google Scholar 

  • Ade-Omowaye BIO, Angersbach A, Taiwo KA, Knorr D (2001) The use of pulsed electric fields in producing juice from paprika (Capsicum annuum L.). J Food Process Preserv 25:353–365

    Article  Google Scholar 

  • Ade-Omowaye BIO, Taiwo KA, Eshtiaghi NM, Angersbach A, Knorr D (2003) Comparative evaluation of the effects of pulsed electric field and freezing on cell membrane permeabilisation and mass transfer during dehydration of red bell peppers. Innov Food Sci Emerg 4:177–188

    Article  CAS  Google Scholar 

  • Agcam E, Akyıldız A, & Evrendilek GA (2014) Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chemistry 143:354–361

    Google Scholar 

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2009) Effects of high–intensity pulsed electric fields on lipoxygenase and hydroperoxide lyase activities in tomato juice. J Food Sci 74:C595–C601

    Article  PubMed  Google Scholar 

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2010a) High-intensity pulsed electric fields processing parameters affecting polyphenoloxidase activity of strawberry juice. J Food Sci 75:C641–C646

    Article  PubMed  Google Scholar 

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2010b) Impact of high-intensity pulsed electric field variables affecting peroxidase and lipoxygenase activities of watermelon juice. LWT-Food Sci Technol 43:897–902

    Google Scholar 

  • Andreou V, Dimopoulos G, Katsaros G, Taoukis P (2016) Comparison of the application of high pressure and pulsed electric fields technologies on the selective inactivation of endogenous enzymes in tomato products. Innov Food Sci Emerg 38:349–355

    Google Scholar 

  • Arroyo C, Eslami S, Brunton NP, Arimi JM, Noci F, Lyng JG (2015) An assessment of the impact of pulsed electric fields processing factors on oxidation, color, texture, and sensory attributes of Turkey breast meat. Poult Sci 94:1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Martín-Belloso O, Witrowa-Rajchert D, Lebovka N, Vorobiev E (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77:773–798

    Article  Google Scholar 

  • Barbosa-Canovas GV, Gongora-Nieto MM, Pothakamury UR, Swanson BG (eds) (1998) Preservation of foods with pulsed electric fields. Academic, London

    Google Scholar 

  • Barsotti L, Dumay E, Mu TH, Fernandez-Diaz MD, Cheftel JC (2002) Effects of high voltage electric pulses on protein based food constituents and structures. Trends Food Sci Technol 12:136–144

    Article  Google Scholar 

  • Bendicho S, Estela C, Giner J, Barbosa-Cánovas GV, Martín O (2002) Effects of high intensity pulsed electric field and thermal treatments on a lipase from Pseudomonas fluorescens. J Dairy Sci 85:19–27

    Article  CAS  PubMed  Google Scholar 

  • Bendicho S, Barbosa-Cánovas GV, Martín O (2003) Reduction of protease activity in milk by continuous flow high–intensity pulsed electric field treatments. J Dairy Sci 86:697–703

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Aguirre D (2018) Technological hurdles and research pathways on emerging technologies for food preservation. In: Barba FJ, Sant’Ana AS, Orlien V, Koubba M (eds) Innovative technologies for food preservation. Academic, London, pp 277–303

    Chapter  Google Scholar 

  • Bobinaitė R, Pataro G, Lamanauskas N, Šatkauskas S, Viškelis P, Ferrari G (2015) Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J Food Sci Technol 52:5898–5905

    Article  PubMed  Google Scholar 

  • Boussetta N, Voroviev LH, Cordin-Falcimaigne A, & Lanoisellé JL (2012) Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT–Food Science and Technology 46:127–134

    Google Scholar 

  • Carbonell JM, Buniowska M, Braba FJ, Grimi N, Vorobiev E, Esteve MJ, Frígola A (2016) Changes of antioxidant compounds in a fruit juice-Stevia rebaudiana blend processed by pulsed electric technologies and ultrasound. Food Bioprocess Technol 9:1159–1168

    Article  Google Scholar 

  • Cortés C, Esteve MJ, Frıgola A, & Torregrosa F (2005) Quality characteristics of horchata (a Spanish vegetable beverage) treated with pulsed electric fields during shelf-life. Food Chemistry 91(2):319–325

    Google Scholar 

  • Cserhalmi Z, Sass-Kiss Á, Tóth-Markus M, Lechner N (2006) Study of pulsed electric field treated citrus juices. Innov Food Sci Emerg Technol 7:49–54

    Article  CAS  Google Scholar 

  • Elez-Martínez P, Aguiló-Aguayo I, Martín-Belloso O (2006) Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by processing parameters. J Sci Food Agric 86:71–81

    Article  Google Scholar 

  • Elez-Martínez P, Suárez-Recio M, Martín-Belloso O (2007) Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields. J Food Eng 78:184–193

    Article  Google Scholar 

  • Elez-Martínez P, Odriozola-Serrano I, Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O (2017) Effects of pulsed electric fields processing strategies on health-related compounds of plant-based foods. Food Eng Rev 9:213–225

    Article  Google Scholar 

  • Espachs-Barroso A, Van Loey A, Hendrickx M, Martín-Belloso O (2006) Inactivation of plant pectin methylesterase by thermal or high intensity pulsed electric field treatments. Innov Food Sci Emerg Technol 7:40–48

    Article  CAS  Google Scholar 

  • Faridnia F, Ma QL, Bremer PJ, Burritt DJ, Hamid N, Oey I (2015) Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. Innov Food Sci Emerg Technol 29:31–40

    Article  CAS  Google Scholar 

  • Frandsen HB, Markedal KE, Martín-Belloso O, Sánchez-Vega R, Soliva-Fortuny R, Sørensen H, Sørensen S, Sørensen JC (2014) Effects of novel processing techniques on glucosinoales and membrane associated myrosinases in broccoli. Polish J Food Nutr Sci 64:17–25

    Article  CAS  Google Scholar 

  • Gabrić D, Barba F, Roohinejad S, Gharibzahedi SMT, Radojčin M, Putnik P, Bursać KD (2018) Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: a review. J Food Process Eng 41:1–14

    Article  Google Scholar 

  • Garde-Cerdán T, Arias-Gil M, Marsellés-Fontanet AR, Ancín-Azpilicueta C, Martín-Belloso O (2007) Effects of thermal and non-thermal processing treatments on fatty acids and free aminoacids of grape juice. Food Control 18:473–479

    Article  Google Scholar 

  • Giner J, Gimeno V, Espachs A, Elez P, Barbosa-Cánovas GV, Martín O (2000) Inhibition of tomato (Lycopersicon esculentum mill.) pectin methylesterase by pulsed electric fields. Innov Food Sci Emerg 1:57–67

    Article  CAS  Google Scholar 

  • González-Casado S, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R (2018a) Induced accumulation of individual carotenoids and quality changes in tomato fruits treated with pulsed electric fields and stored at different post-treatments temperatures. Postharvest Biol Technol 146:117–123

    Article  Google Scholar 

  • González-Casado S, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R (2018b) Application of pulsed electric fields to tomato fruit for enhancing the bioaccessibility of carotenoids in derived products. Food Funct 9:2282–2289

    Article  PubMed  Google Scholar 

  • Grimi N, Lebovka N, Vorobiev E, Vaxelaire J (2009) Effect of a pulsed electric field treatment on expression behavior and juice quality of Chardonnay grape. Food Biophys 4:191–198

    Article  Google Scholar 

  • Guderjan M, Töpfl S, Angersbach A, Knorr D (2005) Impact of pulsed electric field treatment on the recovery and quality of plant oils. J Food Eng 67:281–287

    Article  Google Scholar 

  • Guderjan M, Elez-Martínez P, Knorr D (2007) Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov Food Sci Emerg 8:55–62

    Article  CAS  Google Scholar 

  • Han Z, Zeng XA, Zhang BS, Yu SJ (2009) Effects of pulsed electric fields (PEF) treatment on the properties of corn starch. J Food Eng 93:318–323

    Article  CAS  Google Scholar 

  • Harborne JB, Baxter H, Moss GP (1999) Phytochemical dictionary: a handbook of bioactive compounds from plants, 2nd edn. Taylor & Francis, London

    Google Scholar 

  • Ho SY, Mittal GS, Cross JD (1997) Effects of high field electric pulses on the activity of selected enzymes. J Food Eng 31:69–84

    Article  Google Scholar 

  • Jaeger H, Meneses N, Knorr D (2009) Impact of PEF treatment inhomogeneity such as electric field distribution, flow characteristics and temperature effects on the inactivation of E. coli and milk alkaline phosphatase. Innov Food Sci Emerg 10:470–480

    Article  CAS  Google Scholar 

  • Jaeger H, Schulz M, Lu P, Knorr D (2012) Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. Innov Food Sci Emerg 14:46–60

    Article  Google Scholar 

  • Jayathunge KGLR, Stratakos AC, Cregenzán-Albertia O, Grant IR, Lyng J, & Koidis A (2017) Enhancing the lycopene in vitro bioaccessibility of tomato juice synergistically applying thermal and non-thermal processing technologies. https://doi.org/10.1016/j.foodchem.2016.11.117

  • Jin W, Wang Z, Peng D, Shen W, Zhu Z, Cheng S, Li B, Huang Q (2020) Effect of pulsed electric field on assembly structure of a-amylase and pectic electrostatic complexes. Food Hydrocoll 101:105547

    Article  CAS  Google Scholar 

  • Lamanauskas N, Pataro G, Bobinas C, Satkauskas S, Viskelis P, Bobinaite R, Ferrari G (2016) Impact of pulsed electric field treatment on juice yield and recovery of bioactive compounds from raspberries and their by-products. Zemdirbyste-Agriculture 103:83–90

    Article  Google Scholar 

  • Leong SY, Burritt DJ, Oey I (2016) Evaluation of the anthocyanin release and health promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chem 196:833–841

    Article  CAS  PubMed  Google Scholar 

  • Li X, Farid M (2016) A review on recent development in non-conventional food sterilization technologies. J Food Eng 182:33–45

    Article  Google Scholar 

  • Li S-Q, Bomser JA, Zhang QH (2005) Effects of pulsed electric fields and heat treatment on stability and secondary structure of bovine immunoglobulin G. J Agric Food Chem 53:663–670

    Article  CAS  PubMed  Google Scholar 

  • Li Y-Q, Tian W-L, Mo H-Z, Zhang Y-L, Zhao X-Z (2013) Effects of pulsed electric field processing on quality characteristics and microbial inactivation of soymilk. Food Bioprocess Technol 6:1907–1916

    Article  CAS  Google Scholar 

  • López N, Puértolas E, Condón S, Álvarez I, Raso J (2008) Application of pulsed electric fields for improving the maceration process during vinification of red wine: influence of grape variety. Eur Food Res Technol 227:1099–1107

    Article  Google Scholar 

  • López N, Puértolas S, Condón S, Raso J, Álverez I (2009a) Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT-Food Sci Technol 42:1674–1680

    Article  Google Scholar 

  • López N, Puértolas E, Hernández-Orte P, Álvarez I, Raso J (2009b) Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times. LWT–Food Sci Technol 42:1225–1231

    Article  Google Scholar 

  • López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R (2020) Enhancing phenolic content in carrots by pulsed electric fields during post-treatment time: effects on cell viability and quality attributes. Innov Food Sci Emerg 59:102252

    Article  Google Scholar 

  • Ma QL, Hamid N, Oey I, Kantono K, Faridnia F, Yoo M, Farouk M (2016) Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. Innov Food Sci Emerg 37:359–374

    Article  Google Scholar 

  • Marco-Molés R, Rojas-Graü MA, Hernando I, Pérez-Munuera I, Soliva-Fortuny R, Martίn-Belloso O (2011) Physical and structural changes in liquid whole egg treated with high-intensity pulsed electric fields. J Food Sci 76:257–264

    Article  Google Scholar 

  • Marsellés-Fontanet AR, Puig-Pujol A, Olmos P, Mínguez-Sanz S, Martín-Belloso O (2013) A comparison of the effects of pulsed electric field and thermal treatments on grape juice. Food Bioprocess Technol 6:978–987

    Article  Google Scholar 

  • Masood H, Trujillo FJ, Knoerzer K, Juliano P (2018) Designing, modeling, and optimizing processes to ensure microbial safety and stability through emerging technologies. In: Barba FJ, Sant’Ana AS, Orlien V, Koubba M (eds) Innovative technologies for food preservation. Academic, London, pp 187–229

    Chapter  Google Scholar 

  • Min S, & Zhang QH (2003) Effects of commercial‐scale pulsed electric field processing on flavor and color of tomato juice. Journal of Food Science 68(5):1600–1606

    Google Scholar 

  • Min S, Jin ZT, Min SK, Yeom H, Zhang QH (2003a) Commercial-scale pulsed electric field processing of orange juice. J Food Sci 68:1265–1271

    Article  CAS  Google Scholar 

  • Min S, Jin ZT, Zhang QH (2003b) Commercial scale pulsed electric field processing of tomato juice. J Agric Food Chem 51:3338–3344

    Article  CAS  PubMed  Google Scholar 

  • Monfort S, Gayán E, Saldaña G, Puértolas E, Condón S, Raso J (2010) Inactivation of Salmonella typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innov Food Sci Emerg 11:306–313

    Article  CAS  Google Scholar 

  • Morales de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2011) Impact of high intensity pulsed electric fields or heat treatments on the fatty acid and mineral profiles of a fruit juice-soymilk beverage during storage. Food Control 22:1975–1198

    Article  Google Scholar 

  • Morales-de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2010) Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice-soymilk beverage in chilled storage. LWT-Food Sci Technol 43:872–881

    Article  Google Scholar 

  • Morales‐de la Peña M, Salvia‐Trujillo L, Rojas‐Graü MA, & Martín‐Belloso O (2017) Effects of high intensity pulsed electric fields or thermal pasteurization and refrigerated storage on antioxidant compounds of fruit juice‐milk beverages. Part I: Phenolic acids and flavonoids. Journal of Food Processing and Preservation 41(3): e12912

    Google Scholar 

  • Morales-de la Peña M, Welti-Chanes J, Martín-Belloso O (2019) Novel technologies to improve food safety and quality. Curr Opin Food Sci 30:1–7

    Article  Google Scholar 

  • Moussa-Ayoub TE, Jäger H, Knorr D, El-Samahy SK, Kroh LW, & Rohn S (2017) Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT-Food Science and Technology 79:534–542

    Google Scholar 

  • Moussa-Ayoub TE, Jaeger H, Youssef K, Knorr D, El-Samahy S, Kroh LW, & Rohn S (2016) Technological characteristics and selected bioactive compounds of Opuntia dillenii cactus fruit juice following the impact of pulsed electric field pre-treatment. Food chemistry 210:249–261

    Google Scholar 

  • Niakousari M, Gahruie HH, Razmjooei M, Roohinejad S, Greiner R (2018) Effects of innovative processing technologies on microbial targets based on food categories: comparing traditional and emerging technologies for food preservation. In: Barba FJ, Sant’Ana AS, Orlien V, Koubba M (eds) Innovative technologies for food preservation. Academic, London, pp 133–185

    Chapter  Google Scholar 

  • Noci F, Riener J, Walkling-Ribeiro M, Cronin DA, Morgan DJ, Lyng JG (2008) Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. J Food Eng 85:141–146

    Article  Google Scholar 

  • Odriozola-Serrano I, Bendicho-Porta S, Martín-Belloso O (2006) Comparative study on shelf-life of whole milk processed by high-intensity pulsed electric field or heat treatment. J Dairy Sci 89:905–911

    Article  CAS  PubMed  Google Scholar 

  • Odriozola-Serrano I, Aguiló-Aguayo I, Soliva-Fortuny R, Gimeno-Añó V, Martín-Belloso O (2007) Lycopene, vitamin C, and antioxidant capacity of tomato juice as affected by high-intensity pulsed electric fields critical parameters. J Agric Food Chem 55:9036–9042

    Article  CAS  PubMed  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Gimeno-Añó V, Martín-Belloso O (2008) Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. J Food Eng 89:210–216

    Article  Google Scholar 

  • Odriozola-Serrano I, Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2013) Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends Food Sci Technol 29:98–107

    Article  CAS  Google Scholar 

  • Oey I, Roohinejad S, Leong SY, Faridnia F, Lee PY, Kethireddy V (2016) Pulsed electric field processing: its technological opportunities and consumer perception. In: Jaiswal AK (ed) Food processing technologies. CRC Press, Boca Raton, pp 447–516

    Google Scholar 

  • Parniakov O, Barba FJ, Grimi N, Lebovka N, & Vorobiev E (2014) Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels. Food Research International 65:337–343

    Google Scholar 

  • Perez OE, Pilosof AMR (2004) Pulsed electric fields effects on the molecular structure and gelation of β-lactoglobulin concentrate and egg white. Food Res Int 37:102–110

    Article  CAS  Google Scholar 

  • Praporscic I, Lebovka N, Vorobiev E, Mietton-Peuchot M (2007) Pulsed electric field enhanced expression and juice quality of white grapes. Sep Purif Technol 52:520–526

    Article  CAS  Google Scholar 

  • Puértolas E, Cregenzán O, Luengo E, Álvarez I, & Raso J (2013) Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chemistry 136(3-4):1330–1336

    Google Scholar 

  • Puértolas E, Martínez de Marañón I (2015) Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties. Food Chem 167:497–502

    Article  PubMed  Google Scholar 

  • Puértolas E, Hernández-Orte P, Saldaña G, Álvarez I, Raso J (2010) Improvement of winemaking process using pulsed electric fields at pilot plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Res Int 43:761–766

    Article  Google Scholar 

  • Puértolas E, Koubaa M, Barba FJ (2016) An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: energy and economic cost implications. Food Res Int 80:19–26

    Article  Google Scholar 

  • Quitão-Teixeira LJ, Aguiló-Aguayo I, Ramos AM, Martín-Belloso O (2008) Keeping carrot juice color through the inactivation of oxidative enzymes by high-intensity pulsed electric field. Food Bioprocess Technol 1:364–373

    Article  Google Scholar 

  • Quitão-Teixeira LJ, Odriozola-Serrano I, Soliva-Fortuny R, Mota-Ramos A, Martín-Belloso O (2009) Comparative study on antioxidant properties of carrot juice stabilised by high-intensity pulsed electric field or heat treatments. J Sci Food Agric 89:2363–2642

    Article  Google Scholar 

  • Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, Elez-Martínez P (2019) Enhancing hydroxycinnamic acids and flavan-3-ol contents by pulsed electric fields without affecting quality attributes of apple. Food Res Int 121:433–440

    Article  PubMed  Google Scholar 

  • Riener J, Noci F, Cronin DA, Morgan DJ, Lyng JG (2008) Combined effect of temperature and pulsed electric fields on apple juice peroxidase and polyphenoloxidase inactivation. Food Chem 109:402–407

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Roque MJ, de Ancos B, Sánchez-Moreno C, Cano MP, Elez-Martínez P, Martín-Belloso O (2015) Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J Funct Foods 14:33–43

    Article  Google Scholar 

  • Salvia-Trujillo L, Morales-de la Peña M, Rojas-Graü A, Martín-Belloso O (2011) Changes in water soluble vitamins and antioxidant capacity of fruit juice-milk beverages as affected by high-intensity pulsed electric field (HIPEF) or heat during chilled storage. J Agric Food Chem 59:10034–10043

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Vega R, Elez-Martínez P, & Martín-Belloso O (2015) Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innovative Food Science & Emerging Technologies 29:70–77

    Google Scholar 

  • Sánchez-Vega R, Rodríguez-Roque MJ, Elez-Martínez P, Martín-Belloso O (2019) Impact of critical high-intensity pulsed electric field processing parameters on oxidative enzymes and color of broccoli juice. J Food Process Preserv 44:e14362

    Google Scholar 

  • Sánchez-Vega R, Garde-Cerdán T, Rodríguez-Roque MJ, Elez-Martínez P, Martín-Belloso O (2020) High-intensity pulsed electric fields or thermal treatment of broccoli juice: the effects of processing on minerals and free amino acids. Eur Food Res Technol 246:539–548

    Article  Google Scholar 

  • Sarkis JR, Boussetta N, Tessaro IC, Markzac LDF, Voroviev E (2015) Application of pulsed electric fields and high voltage electrical discharges for oil extraction from sesame seeds. J Food Eng 153:20–27

    Article  CAS  Google Scholar 

  • Schilling S, Toepfl S, Ludwig M, Dietrich H, Knorr D, Neidhart S, Schieber A, Carle R (2008) Comparative study of juice production by pulsed electric field treatment and enzymatic maceration of apple mash. Eur Food Res Technol 226:1389–1398

    Article  CAS  Google Scholar 

  • Sharma P, Oey I, Bremer P, Everett DW (2014) Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. Int Dairy J 39:146–156

    Article  CAS  Google Scholar 

  • Sharma P, Oey I, Bremer P, Everett DW (2018) Microbiological and enzymatic activity of bovine whole milk treated by pulsed electric fields. Int J Dairy Technol 71:10–19

    Article  CAS  Google Scholar 

  • Shorstkii I, Mirshekarloo MS, Koshevoi E (2017) Application of pulsed electric field for oil extraction from sunflower seeds: electrical parameter effects on oil yield. J Food Process Eng 40:e12281

    Article  Google Scholar 

  • Shorstkii I, Khudyakov D, Mirshekarloo MS (2020) Pulsed electric field assisted sunflower oil pilot production: impact on oil yield, extraction kinetics and chemical parameters. Innov Food Sci Emerg Technol 60:102309

    Article  CAS  Google Scholar 

  • Siemer C, Töpfl S, Witt J, Otermeier R (2018) Use of pulsed electric fields (PEF) in the food industry. DLG Expert Rep 5:1–12

    Google Scholar 

  • Soliva-Fortuny R, Balasa A, Knorr D, Martín-Belloso O (2009) Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol 20:544–556

    Article  CAS  Google Scholar 

  • Soliva-Fortuny R, Bendicho-Porta S, Martín-Belloso O (2006) Modeling high-intensity pulsed electric field inactivation of a lipase from Pseudomonas fluorescens. J Dairy Sci 89(11): 4096–4104

    Google Scholar 

  • Soliva-Fortuny R, Vendrell-Pacheco M, Martin-Belloso O, Elez-Martinez P (2017) Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biol Technol 132:195–201

    Article  CAS  Google Scholar 

  • Suwandy V, Carne A, van de Ven R, Bekhit AEA, Hopkins DL (2015) Effect of repeated pulsed electric field treatment on the quality of cold-boned beef loins and topsides. Food Bioprocess Technol 8:1218–1228

    Article  CAS  Google Scholar 

  • Taiwo KA, Angersbach A, Knorr D (2003) Effects of pulsed electric field on quality factors and mass transfer during osmotic dehydration of apples. J Food Process Eng 26:31–48

    Article  Google Scholar 

  • Toepfl S, Heinz V, Knorr D (2006) Applications of pulsed electric fields technology for the food industry. In: Raso J, Heinz V (eds) Food engineering series. Springer, New York, pp 197–221

    Google Scholar 

  • Tson TY, Astunian RD (1986) Absorption and conversion of electric field energy by membrane bound ATPases. Bioelectric Bioenerg 15:457–476

    Article  Google Scholar 

  • Vallverdú-Queralt A, Oms-Oliu G, Odriozola-Serrano I, Lamuela-Raventós RM, Martín-Belloso O, Elez-Martínez P (2012) Effects of pulsed electric fields on the bioactive compound content and antioxidant capacity of tomato fruit. J Agric Food Chem 60:3126–3134

    Article  PubMed  Google Scholar 

  • Vallverdú-Queralt A, Odriozola-Serrano I, Oms-Oliu G, Lamuela-Raventós RM, Elez-Martínez P, & Martín-Belloso O (2013) Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food chemistry 141(3):3131–3138

    Google Scholar 

  • Vinceković M, Viskić M, Jurić S, Giacometti J, Bursać Kovačević D, Putnik P, Režek Jambrak A (2017) Innovative technologies for encapsulation of Mediterranean plants extracts. Trends Food Sci Technol 69:1–12

    Article  Google Scholar 

  • Wang Q, Li Y, Sun DW, Zhu Z (2018) Enhancing food processing by pulsed and high voltage electric fields: principles and applications. CRC Crit Rev Food Sci 58:2285–2298

    Article  CAS  Google Scholar 

  • Wu L, Zhao W, Yang R, Yan W (2015) Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system. Food Chem 175:115–120

    Article  CAS  PubMed  Google Scholar 

  • Zeng XA, Han Z, Zi ZH (2010) Effects of pulsed electric field treatments on quality of peanut oil. Food Control 21:611–614

    Article  Google Scholar 

  • Zeng F, Gao QY, Han Z, Zeng XA, Yu SJ (2016) Structural properties and digestibility of pulsed electric field treated waxy rice starch. Food Chem 194:1313–1319

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yang R, Hua X, Zhang W, Zhang Z (2011) Influence of pulsed electric field treatments on the volatile compounds of milk in comparison with pasteurized processing. J Food Sci 76(1):C127–C132

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang LJ, Jiang W, Qian JY (2017) Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT-Food Sci Technol 84:73–81

    Article  CAS  Google Scholar 

  • Zhao W, Yang RJ, Tang YL, Zhang WB, Hua X (2009) Investigation of the protein-protein aggregation of egg white proteins under pulsed electric fields. J Agric Food Chem 57:3571–3577

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Tang Y, Lu L, Chen X, Li C (2014) Pulsed electric fields processing of protein-based foods. Food Bioprocess Technol 7:114–125

    Article  CAS  Google Scholar 

  • Zulueta A, Barba FJ, Esteve MJ, Frígola A (2013) Changes in quality and nutritional parameters during refrigerated storage of orange juice-milk beverage treated by equivalent thermal and non-thermal processes for mild pasteurization. Food Bioprocess Technol 6(8):2018–2030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Martín-Belloso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martín-Belloso, O., Soliva-Fortuny, R., Morales-de la Peña, M. (2022). Effect of Pulsed Electric Fields on Food Quality. In: Raso, J., Heinz, V., Alvarez, I., Toepfl, S. (eds) Pulsed Electric Fields Technology for the Food Industry. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70586-2_7

Download citation

Publish with us

Policies and ethics