Skip to main content

Advertisement

Log in

Pulsed Electric Fields Technology for Healthy Food Products

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

A great number of research works have demonstrated the feasibility of pulsed electric fields (PEF) technology as a novel treatment to obtain safe and high-quality foods with significant concentration of health-related compounds. PEF can be applied either as a preservation process with the potential to substitute conventional heat treatments or as a way to assist common industrial food processes with the aim of enhancing the characteristics of the final product and improving their efficiency in terms of processing time and yield. PEF application provides an excellent advantage to retain significant amounts of valuable compounds, due to its non-thermal nature, thus resulting in safe high-quality foods from both sensory and nutritional points of view, which is greatly appreciated by current consumers. This review gathers the most relevant information related to the application of PEF, using either high or moderate intensities of processing conditions, to different food matrices with the aim of enhancing their health-related attributes and improve the efficiency of some processes. The main challenges and opportunities for being implemented at industrial level are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from [86]

Similar content being viewed by others

References

  1. Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, Elez-Martínez P (2018) Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit Rev Food Sci Nutr 58(15):2531–2548

    Article  PubMed  CAS  Google Scholar 

  2. Wang Q, Li Y, Sun DW, Zhu Z (2018) Enhancing food processing by pulsed and high voltage electric fields: principles and applications. Crit Rev Food Sci Nutr 58(13):2285–2298

    Article  CAS  PubMed  Google Scholar 

  3. Oey I, Roohinejad S, Leong SY, Faridnia F, Lee PY, Kethireddy V (2016) Pulsed electric field processing: Its technological opportunities and consumer perception. In: Jaiswal AK (ed) Food processing technologies. CRC Press, Boca Raton, pp 447–516

    Google Scholar 

  4. Toepfl S, Heinz V, Knorr D (2006) Applications of pulsed electric fields technology for the food industry. In: Raso J, Heinz V (eds) Food engineering series. Springer, New York, pp 197–221

    Google Scholar 

  5. Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Martin-Belloso O, Witrowa-Rajchert D, Lebovka N, Vorobiev E (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77:773–798

    Article  Google Scholar 

  6. Elez-Martínez P, Odriozola-Serrano I, Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O (2017) Effects of pulsed electric fields processing strategies on health-related compounds of plant-based foods. Food Eng Rev 9(3):213–225

    Article  CAS  Google Scholar 

  7. Odriozola-Serrano I, Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2013) Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends Food Sci Technol 29(2):98–107

    Article  CAS  Google Scholar 

  8. Jacobo-Velázquez DA, del Cuéllar-Villarreal M, R, Welti-Chanes J, Cisneros-Zevallos L, Ramos-Parra PA, Hernández-Brenes C (2017) Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends Food Sci Technol 60:80–87

    Article  CAS  Google Scholar 

  9. Soliva-Fortuny R, Balasa A, Knorr D, Martín-Belloso O (2009) Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol 20(11–12):544–556

    Article  CAS  Google Scholar 

  10. Soliva-Fortuny R, Vendrell-Pacheco M, Martin-Belloso O, Elez- Martinez P (2017) Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biol Tec 132:195–201

    Article  CAS  Google Scholar 

  11. Traffano-Schiffo MV, Tylewicz U, Castro-Giraldez M, Fito PJ, Ragni L, Dalla Rosa M (2016) Effect of pulsed electric fields pre-treatment on mass transport during the osmotic dehydration of organic kiwifruit. Innov Food Sci Emerg Technol 38:243–251

    Article  CAS  Google Scholar 

  12. Traffano-Schiffo MV, Laghi L, Castro-Giraldez M, Tylewicz U, Romani S, Ragni L et al (2017) Osmotic dehydration of organic kiwifruit pre-treated by pulsed electric fields: Internal transport and transformations analyzed by NMR. Innov Food Sci Emerg Technol 41:259–266

    Article  CAS  Google Scholar 

  13. Tylewicz U, Tappi S, Genovese J, Mozzon M, Rocculi P (2019) Metabolic response of organic strawberries and kiwifruit subjected to PEF assisted-osmotic dehydration. Innov Food Sci Emerg Technol 56:1–8

    Article  CAS  Google Scholar 

  14. Tylewicz U, Aganovic K, Vannini M, Toepfl S, Bortolotti V, Dalla Rosa M et al (2016) Effect of pulsed electric field treatment on water distribution of freeze-dried apple tissue evaluated with DSC and TD-NMR techniques. Innov Food Sci Emerg Technol 37:352–358

    Article  CAS  Google Scholar 

  15. Qin BL, Pothakamury UR, Barbosa-Canovas GV, Swanson BG (1996) Nonthermal pasteurization of liquid foods using high - intensity pulsed electric fields. Crit Rev Food Sci Nutr 36(6):603–627

    Article  CAS  PubMed  Google Scholar 

  16. Gabrić D, Barba F, Roohinejad S, Gharibzahedi SMT, Radojčin M, Putnik P, Bursać Kovačević D (2018) Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: a review. J Food Process Eng 41(1):1–14

    Article  CAS  Google Scholar 

  17. Barbosa-Canovas GV, Gongora-Nieto MM, Pothakamury UR, Swanson BG (eds) (1998) Preservation of foods with pulsed electric fields. Academic Press, London

    Google Scholar 

  18. Puértolas E, Koubaa M, Barba FJ (2016) An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: energy and economic cost implications. Food Res Int 80:19–26

    Article  CAS  Google Scholar 

  19. Vinceković M, Viskić M, Jurić S, Giacometti J, Bursać Kovačević D, Putnik P, Režek Jambrak A (2017) Innovative technologies for encapsulation of mediterranean plants extracts. Trends Food Sci Tehnol 69:1–12

    Article  CAS  Google Scholar 

  20. Zhang L, Wang LJ, Jiang W, Qian JY (2017) Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT-Food Sci Technol 84:73–81

    Article  CAS  Google Scholar 

  21. Dziadek K, Kopeć A, Dróżdż T, Kiełbasa P, Ostafin M, Bulski K, Oziembłowski M (2019) Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. J Food Sci Tech 56(3):1184–1191

    Article  CAS  Google Scholar 

  22. Walkling-Ribeiro M, Noci F, Cronin DA, Riener J, Lyng JG, Morgan DJ (2008) Reduction of staphylococcus aureus and quality changes in apple juice processed by ultraviolet irradiation, pre-heating and pulsed electric fields. J Food Eng 89(3):267–273

    Article  Google Scholar 

  23. Wu Y, Mittal GS, Griffiths MW (2005) Effect of pulsed electric field on the inactivation of microorganisms in grape juices with and without antimicrobials. Biosyst Eng 90:1–7

    Article  Google Scholar 

  24. Bendicho S, Espachs A, Arántegui J, Martín O (2002) Effect of high intensity pulsed electric fields and heat treatments on vitamins of milk. J Dairy Res 69(1):113–123

    Article  CAS  PubMed  Google Scholar 

  25. Riener J, Noci F, Cronin DA, Morgan DJ, Lyng JG (2009) Effect of high intensity pulsed electric fields on enzymes and vitamins in bovine raw milk. Int J Dairy Technol 62(1):1–6

    Article  CAS  Google Scholar 

  26. Salvia-Trujillo L, Morales-de la Peña M, Rojas-Graü A, Martín-Belloso O (2011) Changes in water-soluble vitamins and antioxidant capacity of fruit juice-milk beverages as affected by high-intensity pulsed electric fields (HIPEF) or heat during chilled storage. J Agric Food Chem 59(18):10034–10043

    Article  CAS  PubMed  Google Scholar 

  27. Morales-de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2017) Effects of high intensity pulsed electric fields or thermal pasteurization and refrigerated storage on antioxidant compounds of fruit juice-milk beverages. Part I: Phenolic Acids and Flavonoids. J Food Process Preserv 41(13):e12912

    Article  CAS  Google Scholar 

  28. Vázquez-Cabral D, Valdez-Fragoso A, Rocha-Guzman NE, Moreno-Jimenez MR, Gonzalez-Laredo RF, Morales-Martinez PS, Rojas-Contreras JA, Mujica-Paz H, Gallegos-Infante JA (2016) Effect of pulsed electric field (PEF)-treated kombucha analogues from Quercus obtusata infusions on bioactives and microorganisms. Innov Food Sci Emerg Technol 34:171–179

    Article  CAS  Google Scholar 

  29. Mtaoua H, Sánchez-Vega R, Ferchichi A, Martín-Belloso O (2017) Impact of high-intensity pulsed electric fields or thermal treatment on the quality attributes of date juice. J Food Process Preserv 47:e13052

    Article  CAS  Google Scholar 

  30. Salinas-Roca B, Elez-Martínez P, Welti-Chanes J, Martín-Belloso O (2017) Quality changes in mango juice treated by high-intensity pulsed electric fields throughout the storage. Food Bioprocess Technol 10(11):1970–1983

    Article  CAS  Google Scholar 

  31. Morales-de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martin-Belloso O (2017) Effects of high intensity pulsed electric fields or thermal treatments and refrigerated storage on antioxidant compounds of fruit juice-milk beverages. Part II: Carotenoids. J Food Process Preserv 41(5):e13143

    Article  CAS  Google Scholar 

  32. Frandsen HB, Markedal KE, Martín-Belloso O, Sánchez-Vega R, Soliva-Fortuny R, Sørensen H, Sørensen S, Sørensen JC (2014) Effects of novel processing techniques on glucosinoales and mem- brane associated myrosinases in broccoli. Polish J Food Nutr Sci 64:17–25

    Article  CAS  Google Scholar 

  33. Moussa-Ayoub TE, Jäger H, Knorr D, El-Samahy SK, Kroh LW, Rohn S (2017) Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT - Food Sci Technol 79:534–542

    Article  CAS  Google Scholar 

  34. Sánchez-Vega R, Elez-Martínez P, Martín-Belloso O (2014) Effects of high-intensity pulsed electric fields processing parameters on the chlorophyll content and its degradation compounds in broccoli juice. Food Bioprocess Technol 7:1137–1148. https://doi.org/10.1007/s11947-013-1152-2

    Article  CAS  Google Scholar 

  35. Salvia-trujillo L, Morales-de la Peña M, Rojas-Graü MA, Welti-Chanes J, Martín-Belloso O (2017) Mineral and fatty acid profile of high intensity pulsed electric fields or thermally treated fruit juice-milk beverages stored under refrigeration. Food Control 80:236–243

    Article  CAS  Google Scholar 

  36. Zhang ZH, Zeng XA, Brennan CS, Brennan M, Han Z, Xiong XY (2015) Effects of pulsed electric fields (PEF) on vitamin C and its antioxidant properties. Int J Mol Sci 16(10):24159–24173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marsellés-Fontanet AR, Puig-Pujol A, Olmos P, Mínguez-Sanz S, Martín-Belloso O (2013) A comparison of the effects of pulsed electric field and thermal treatments on grape juice. Food Bioprocess Tech 6:978–987

    Article  CAS  Google Scholar 

  38. Morales-de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2010) Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice-soymilk beverage in chilled storage. LWT-Food Sci Technol 43:872–881

    Article  CAS  Google Scholar 

  39. Odriozola-Serrano I, Soliva-Fortuny R, Gimeno-Añó V, Martín-Belloso O (2008) Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. J Food Eng 89:210–216

    Article  Google Scholar 

  40. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008) Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innov Food Sci Emerg Technol 9:272–279

    Article  CAS  Google Scholar 

  41. Quitão-Teixeira LJ, Odriozola-Serrano I, Soliva-Fortuny R, Mota-Ramos A, Martín-Belloso O (2009) Comparative study on antioxidant properties of carrot juice stabilised by high-intensity pulsed electric field or heat treatments. J Sci Food Agric 89:2363–2642

    Article  CAS  Google Scholar 

  42. Sánchez-Vega R, Elez-Martínez P, Martín-Belloso O (2015) Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innov Food Sci Emerg Technol 29:70–77

    Article  CAS  Google Scholar 

  43. Lee SL, Bang IH, Choi HJ, Min SC (2018) Pasteurization of mixed mandarin and Hallabong tangor juice using pulsed electric field processing combined with heat. Food Sci Biotechnol. https://doi.org/10.1007/s10068-018-0311-7

  44. Elez-Martínez P, Soliva-Fortuny RC, Martín-Belloso O (2006) Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. Eur Food Res Technol 222:321. https://doi.org/10.1007/s00217-005-0073-3

    Article  CAS  Google Scholar 

  45. Odriozola-Serrano I, Aguiló-Aguayo I, Soliva-Fortuny R, Gimeno- Añó V, Martín-Belloso O (2007) Lycopene, vitamin C, and antioxidant capacity of tomato juice as affected by high-intensity pulsed electric fields critical parameters. J Agric Food Chem 55:9036–9042

    Article  CAS  PubMed  Google Scholar 

  46. Barba FJ, Jäger H, Meneses N, Esteve MJ, Frígola A, Knorr D (2012) Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov Food Sci Emerg Technol 14:18–24

    Article  CAS  Google Scholar 

  47. Carbonell-Capella JM, Buniowska M, Cortes C, Zulueta A, Frigola A, Esteve MJ (2017) Influence of pulsed electric field processing on the quality of fruit juice beverages sweetened with Stevia rebaudiana. Food Bioprod Process 101:214–222

    Article  CAS  Google Scholar 

  48. Rivas A, Rodrigo D, Company B, Sampedro F, Rodrigo M (2007) Effects of pulsed electric fields on water-soluble vitamins and ACE inhibitory peptides added to a mixed orange juice and milk beverage. Food Chem 104:1550–1559

    Article  CAS  Google Scholar 

  49. Cortés C, Torregrosa F, Esteve MJ, Frígola A (2006) Carotenoid profile modification during refrigerated storage in untreated and pasteurized orange juice and orange juice treated with high-intensity pulsed electric fields. Journal of Agricultural and Food Chem 54:6247–6254

    Article  CAS  Google Scholar 

  50. Torregrosa F, Cortés C, Esteve MJ, Frígola A (2005) Effect of high-intensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids. J Agric Food Chem 53(9519):9525

    Google Scholar 

  51. Boskou D, Gerothanassis PI, Kefalas P (2006) Natural antioxidant phenols: sources, structure-activity relationship. Research Signpost

  52. Gómez-Maqueo A, Escobedo-Avellaneda Z, Cano MP, Welti-Chanes J (2018) Phenolic compounds in food. In: LML Nollet and JA Gutierrez-Uribe Phenolic Compouds in Food. Characterization and Analysis. Chap. 3, pp. 33–60. CRC Press Taylor & Francis Group

  53. Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950–988

    Article  CAS  PubMed Central  Google Scholar 

  54. Agcam E, Akyildiz A, Evrendilek GA (2014) Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem 143:354–361

    Article  CAS  PubMed  Google Scholar 

  55. Odriozola-Serrano I, Soliva-Fortuny R, Hernández-Jover T, Martín-Belloso O (2009) Carotenoid and phenolic profile oftomato juice processed by high intensity pulsed electric fields compared to conventional thermal treatments. Food Chem 112:258–266

    Article  CAS  Google Scholar 

  56. Aguilar-Rosas SF, Ballinas-Casarrubias ML, Nevarez-Moorillon GV, Martin-Belloso O, Ortega-Rivas E (2007) Thermal and pulsed electric fields pasteurization of apple juice: effects on physicochemical properties and flavour compounds. J Food Eng 83:41–46

    Article  CAS  Google Scholar 

  57. Díaz-Ribas JO, Gallegos-Infante JA, Valdez-Fragoso A, Rocha-Guzmán NE, González-Laredo RF, Rodríguez-Ramírez A, Gamboa-Gómez CI, Moreno-Jiménez MR (2018) Comparative study of phenolic profile and content in infusions and concentrated infusions of Buddleja Scordioides treated by high-intensity pulsed electric fields (HiPEF). beverages. https://doi.org/10.3390/beverages404008

  58. Raham A, Zen XA, Farooq MA, Kumari A, Murtaza MA, Ahmad N, Manzoor MF, Hassan S, Ahmad Z, Bo-Ru C, Jinjing Z, Siddeeg A (2020) Effect of pulsed electric fields processing on physiochemical properties and bioactive compounds of apricot juice. Food Proc Eng e113449

  59. Van der Berg H, Faulks R, Ggranado HF, Hirschberg J, Olmedilla B, Sandmann G, Southon S, Stahl W (2000) The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric 80:880–912

    Article  Google Scholar 

  60. Aadil RM, Zeng XA, Ali A, Zheng F, Farrooq MA, Han Z, Khalid S, Jabbar S (2015) Influence of different pulsed electric field strengths on the quality of the grapefruit juice. Int J Food Sci Technol 50:2290–2296

    Article  CAS  Google Scholar 

  61. Carbonell-Capella JM, Buniowska M, Barba FJ, Grimi N, Vorobiev E, Esteve MJ, Frígola A (2016) Changes of antioxidant compounds in a fruit juice-Stevia rebaudiana blend processed by pulsed electric technologies and ultrasound. Food Bioprocess Technol 9(7):1159–1168

    Article  CAS  Google Scholar 

  62. Nguyen ML, Schwartz SJ (1999) Lycopene: chemical and biological properties. Food Technol 53(2):38–45

    CAS  Google Scholar 

  63. Plaza L, Sánchez-Moreno C, De Ancos B, Elez-Martínez P, Martín-Belloso O, Cano MP (2011) Carotenoid and flavanone content dur- ing refrigerated storage oforange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT-Food Sci Technol 44:834–839

    Article  CAS  Google Scholar 

  64. Zulueta A, Barba FJ, Esteve MJ, Frígola A (2013) Changes in quality and nutritional parameters during refrigerated storage of an orange juice-milk beverage treated by equivalent thermal and non-thermal process for mild pasteurization. Food Bioprocess Technol 6:2018–2030

    Article  CAS  Google Scholar 

  65. Morales-De La Peña M, Salvia-Trujillo L, Rojas-Graü M, Martín-Belloso O (2011) Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice-soymilk beverages during refrigerated storage. Food Chem 129(3):982–990

    Article  PubMed  CAS  Google Scholar 

  66. Vallverdú-Queralt A, Odriozola-Serrano I, Oms-Oliu G, Lamuela-Raventós RM, Elez-Martínez P, Martín-Belloso O (2013) Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field- treated tomatoes. Food Chem 141(3):3131–3138

    Article  PubMed  CAS  Google Scholar 

  67. Bekard I, Dunstan DE (2014) Electric field induced changes in protein conformation. Soft Matter 10(3):431–437

    Article  CAS  PubMed  Google Scholar 

  68. Garde-Cerdán T, Arias-Gil M, Marsellés-Fontanet AR, Ancín-Azpilicueta C, Martín-Belloso O (2007) Effects of thermal and non-thermal processing treatments on fatty acids and free aminoacids of grape juice. Food Control 18:473–479

    Article  CAS  Google Scholar 

  69. Morales-de la Peña M, Salvia-trujillo L, Garde-cerdán T, Rojas-Graü MA, Martín-belloso O (2012) High intensity pulsed electric fields or thermal treatments effects on the amino acid pro fi le of a fruit juice-soymilk beverage during refrigeration storage. Innovative Food Sci Emerg Technol 16:47–53

    Article  CAS  Google Scholar 

  70. Sánchez-Vega R, Garde-Cerdán T, Rodríguez-Roque MJ, Elez-Martínez P, Martín-Belloso O (2020) High‑intensity pulsed electric fields or thermal treatment of broccoli juice: the effects of processing on minerals and free amino acids. Eur Food Res Technol. https://doi.org/10.1007/s00217-019-03420-y

  71. Zeng X, Han Z, Zi Z (2010) Effects of pulsed electric field treat- ments on quality ofpeanut oil. Food Control 21:611–614

    Article  CAS  Google Scholar 

  72. Morales de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2011) Impact of high intensity pulsed electric fields or heat treatments on the fatty acid and mineral profiles of a fruit juice-soymilk beverage during storage. Food Control 22:1975–2198

    Article  CAS  Google Scholar 

  73. Zulueta A, Esteve MJ, Frasquet I, Frigola A (2007) Fatty acid profile changes during orange juice-milk beverage processing by high-pulsed electric field. Eur J Lipid Sci Technol 109(1):25–31

    Article  CAS  Google Scholar 

  74. Odriozola-Serrano I, Bendicho-Porta S, Martín-Belloso O (2006) Comparative study on shelf life of whole milk processed by high-intensity pulsed electric field or heat treatment. J Dairy Sci 89(3):905–911

    Article  CAS  PubMed  Google Scholar 

  75. Lammerskitten A, Mykhailyk V, Wiktor A, Toepfl S, Nowacka M, Bialik M et al (2019) Impact of pulsed electric fields on physical properties of freeze-dried apple tissue. Innovative Food Sci Emerg Technol 57:102–211

    Article  CAS  Google Scholar 

  76. Bobinaitė R, Pataro G, Lamanauskas N, Šatkauskas S, Viškelis P, Ferrari G (2014) Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J Food Sci Technol 52(9):5898–5905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. El Kantar S, Boussetta N, Lebovka N, Foucart F, Rajha HN, Maroun RG et al (2018) Pulsed electric field treatment of citrus fruits: improvement of juice and polyphenols extraction. Innov Food Sci Emerg Technol 46:153–161

    Article  CAS  Google Scholar 

  78. Moussa-Ayoub TE, Jaeger H, Youssef K, Knorr D, El-Samahy S, Kroh LW, Rohn S (2016) Technological characteristics and selected bioactive compounds of Opuntia dillenii cactus fruit juice following the impact of pulsed electric field pre-treatment. Food Chem 210:249–261

    Article  CAS  PubMed  Google Scholar 

  79. Abenoza M, Benito M, Saldaña G, Álvarez I, Raso J, Sánchez-Gimeno AC (2013) Effects of pulsed electric field on yield extraction and quality of olive oil. Food and Bioprocess Technol 6(6):1367–1373

    Article  Google Scholar 

  80. Puértolas E, Martínez de Marañón I (2015) Olive oil pilot-production assisted by pulsed electric field: Impact on extraction yield, chemical parameters and sensory properties. Food Chem 167:497–502

    Article  PubMed  CAS  Google Scholar 

  81. Andreou V, Dimopoulos G, Alexandrakis Z, Katsaros G, Oikonomou D, Toepfl S et al (2017) Shelf-life evaluation of virgin olive oil extracted from olives subjected to nonthermal pretreatments for yield increase. Innovative Food Sci Emerg Technol 40:52–57

    Article  CAS  Google Scholar 

  82. Veneziani G, Esposto S, Taticchi A, Selvaggini R, Sordini B, Lorefice A et al (2019) Extra-virgin olive oil extracted using pulsed electric field technology: cultivar impact on oil yield and quality. Front Nutr 6:1–8

    Article  CAS  Google Scholar 

  83. Sarkis JR, Boussetta N, Tessaro IC, Marczak LDF, Vorobiev E (2015) Application of pulsed electric fields and high voltage electrical discharges for oil extraction from sesame seeds. J Food Eng 153:20–27

    Article  CAS  Google Scholar 

  84. Moradi N, Rahimi M (2018) Effect of simultaneous ultrasound/pulsed electric field pretreatments on the oil extraction from sunflower seeds. Separation Scie Technol 53(13):2088–2099

    Article  CAS  Google Scholar 

  85. Guderjan M, Elez-Martínez P, Knorr D (2007) Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innovative Food Sci Emer Technol 8(1):55–62

    Article  CAS  Google Scholar 

  86. Han SF, Jin W, Yang Q, El-Fatah Abomohra A, Zhou X, Tu R et al (2019) Application of pulse electric field pretreatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater. Renewable Energy 133:233–239

    Article  CAS  Google Scholar 

  87. Bensalem S, Lopes F, Bodénès P, Pareau D, Français O, Le Pioufle B (2018) Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device. Bioresource Technol 257:129–136

    Article  CAS  Google Scholar 

  88. Saldaña G, Cebrián G, Abenoza M, Sánchez-Gimeno C, Álvarez I, Raso J (2017) Assessing the efficacy of PEF treatments for improving polyphenol extraction during red wine vinifications. Innov Food Sci Emerg Technol 39:179–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Maza MA, Martínez JM, Hernández-Orte P, Cebrián G, Sánchez-Gimeno AC, Álvarez I, Raso J (2019) Influence of pulsed electric fields on aroma and polyphenolic compounds of Garnacha wine. Food and Bioprod Process 116:249–257

    Article  CAS  Google Scholar 

  90. Luengo E, Martínez JM, Álvarez I, Raso J (2016) Effects of millisecond and microsecond pulsed electric fields on red beet cell disintegration and extraction of betanines. Industrial Crops Products 84:28–33

    Article  CAS  Google Scholar 

  91. Liu Z, Esveld E, Vincken JP, Bruins ME (2019) Pulsed electric field as an alternative pre-treatment for drying to enhance polyphenol extraction from fresh tea leaves. Food Bioprocess Technol 12(1):183–192

    Article  CAS  Google Scholar 

  92. García-Parra J, González-Cebrino F, Delgado-Adámez J, Cava R, Martín-Belloso O, Elez-Martínez P, Ramírez R (2018) Application of innovative technologies, moderate-intensity pulsed electric fields and high-pressure thermal treatment, to preserve and/or improve the bioactive compounds content of pumpkin. Innovative Food Sci Emerg Technol 45:53–61

    Article  CAS  Google Scholar 

  93. Xue D, Farid MM (2015) Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus). Innov Food Sci Emerg Technol 29:178–186

    Article  CAS  Google Scholar 

  94. González-Casado S, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R (2018a) Induced accumulation of individual carotenoids and quality changes in tomato fruits treated with pulsed electric fields and stored at different post-treatments temperatures. Postharvest Biol Technol 146:117–123

    Article  CAS  Google Scholar 

  95. González-Casado S, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R (2018b) Application of pulsed electric fields to tomato fruit for enhancing the bioaccessibility of carotenoids in derived products. Food and Function 9(4):2282–2289

    Article  PubMed  Google Scholar 

  96. González-Casado S, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R (2018c) Enhancing the carotenoid content of tomato fruit with pulsed electric field treatments: effects on respiratory activity and quality attributes. Postharvest Biol Technol 137:113–118

    Article  CAS  Google Scholar 

  97. López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R (2020) Enhancing phenolic content in carrots by pulsed electric fields during post-treatment time: effects on cell viability and quality attributes. Innovative Food Sci Emerg Technol 59:1–10

    Article  CAS  Google Scholar 

  98. Lohani UC, Muthukumarappan K (2016) Application of the pulsed electric field to release bound phenolics in sorghum flour and apple pomace. Innovative Food Sci Emerg Technol 35:29–35

    Article  CAS  Google Scholar 

  99. Kumari B, Tiwari BK, Walsh D, Griffin TP, Islam N, Lyng JG et al (2019) Impact of pulsed electric field pre-treatment on nutritional and polyphenolic contents and bioactivities of light and dark brewer’s spent grains. Innovative Food Sci Emerg Technol 54:200–210

    Article  CAS  Google Scholar 

  100. Barbosa-Pereira L, Guglielmetti A, Zeppa G (2018) Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food and Bioprocess Technol 11(4):818–835

    Article  CAS  Google Scholar 

  101. Tehrani MG, Elhamirad AH, Azarpazhooh E, Pedramnia A, Sharayei P (2019) Natural valuable compound extraction from onion by-products using a pulsed electric field. Int J Biol Chem 12(1):171–180

    Article  Google Scholar 

Download references

Funding

L. M. Rábago-Panduro received support from Tecnológico de Monterrey (Research chair founds GEE 1A01001 and CDB081) and Mexico’s CONACYT Scholarship Program (CVU 418204). Spanish researchers received support from the Ministry of Economy and Competitiveness of the Spanish Government through the project AGL2013-44851-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Morales-de la Peña.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-de la Peña, M., Rábago-Panduro, L.M., Soliva-Fortuny, R. et al. Pulsed Electric Fields Technology for Healthy Food Products. Food Eng Rev 13, 509–523 (2021). https://doi.org/10.1007/s12393-020-09277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09277-2

Keywords

Navigation