Skip to main content

Impact of Urban and Semi-urban Aerosols on the Cloud Microphysical Properties and Precipitation

  • Chapter
  • First Online:
Air Pollution and Its Complications

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

This chapter reviews urban and semi-urban aerosol influence on cloud microphysical properties and associated precipitation through observations and numerical modeling. Over the previous decade, numerous observational and modeling studies are carried out to understand aerosol-cloud interactions. Remarkable development is made to progress the understanding of physical and chemical mechanisms associated with aerosol-cloud interaction and decrease the uncertainties related to climate forcing. The feedback of thermodynamical and dynamical processes on aerosol-cloud interaction is poorly understood on a large and local scale. Aerosols reduce incoming solar radiation and weaken the land-ocean thermal interaction, thus inhibiting the development of clouds on a large and global scale. Urban and semi-urban aerosols have significant radiative effects and influence the convective potential of the lower atmosphere leading to reduced temperatures and upsurge atmospheric stability, thereby weakening the circulation pattern. The atmospheric thermodynamic states determine the growth and formation of clouds, convection, and precipitation, which may also be influenced by the urban and semi-urban aerosols serving as ice nuclei and cloud condensation nuclei. Urban and semi-urban aerosols may alter the dynamical feedback processes leading to an influence on cloud droplet formation. The review presented in this chapter highlights the significance of urban and semi-urban aerosol-cloud-climate interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V, Welton EJ (2000) Reduction of tropical cloudiness by soot. Science 288(5468):1042–1047

    Article  Google Scholar 

  • Alam K, Khan R, Blaschke T, Mukhtiar A (2014) Variability of aerosol optical depth and their impact on cloud properties in Pakistan. J Atmos Sol Terr Phys 107:104–112

    Article  Google Scholar 

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245(4923):1227–1230

    Article  Google Scholar 

  • Andersen H, Cermak J, Fuchs J, Knutti R, Lohmann U (2017) Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks. Atmos Chem Phys 17(15):9535–9546

    Article  Google Scholar 

  • Cherian R, Quaas J, Salzmann M, Wild M (2014) Pollution trends over Europe constrain global aerosol forcing as simulated by climate models. Geophys Res Lett 41(6):2176–2181

    Article  Google Scholar 

  • Christensen MW, Neubauer D, Poulsen CA, Thomas GE, McGarragh GR, Povey AC, Proud SR, Grainger RG (2017) Unveiling aerosol–cloud interactions–part 1: cloud contamination in satellite products enhances the aerosol indirect forcing estimate. Atmos Chem Phys 17(21):13151–13164

    Article  Google Scholar 

  • Dan S, Min-Zheng D, Da-Ren LV, Pu-Cai W, Yong WANG, Xiao-Ling Z (2012) Impact of different aerosols on the evolution of the atmospheric boundary layer. Atmos Oceanic Sci Lett 5(2):82–87

    Article  Google Scholar 

  • Das S, Dey S, Dash SK, Giuliani G, Solmon F (2015) Dust aerosol feedback on the Indian summer monsoon: sensitivity to absorption property. J Geophys Res Atmos 120(18):9642–9652

    Article  Google Scholar 

  • Dave P, Bhushan M, Venkataraman C (2017) Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci Rep 7(1):17347

    Article  Google Scholar 

  • Fan J, Yuan T, Comstock JM, Ghan S, Khain A, Leung LR, Li Z, Martins VJ, Ovchinnikov M (2009) Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J Geophys Res Atmos 114:D22206. https://doi.org/10.1029/2009JD012352

    Article  Google Scholar 

  • Feingold G, Remer LA, Ramaprasad J, Kaufman YJ (2001) Analysis of smoke impact on clouds in Brazilian biomass burning regions: an extension of Twomey’s approach. J Geophys Res Atmos 106(D19):22907–22922

    Article  Google Scholar 

  • Feingold G, Eberhard WL, Veron DE, Previdi M (2003) First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys Res Lett 30(6):1287. https://doi.org/10.1029/2002GL016633

    Article  Google Scholar 

  • Feingold G, McComiskey A, Rosenfeld D, Sorooshian A (2013) On the relationship between cloud contact time and precipitation susceptibility to aerosol. J Geophys Res Atmos 118(18):10–544

    Article  Google Scholar 

  • Gryspeerdt E, Stier P, Grandey BS (2014) Cloud fraction mediates the aerosol optical depth-cloud top height relationship. Geophys Res Lett 41(10):3622–3627

    Article  Google Scholar 

  • Gryspeerdt E, Stier P, White BA, Kipling Z (2015) Wet scavenging limits the detection of aerosol effects on precipitation. Atmos Chem Phys 15(13):7557–7570

    Article  Google Scholar 

  • Gryspeerdt E, Quaas J, Ferrachat S, Gettelman A, Ghan S, Lohmann U, Morrison H, Neubauer D, Partridge DG, Stier P, Takemura T (2017) Constraining the instantaneous aerosol influence on cloud albedo. Proc Natl Acad Sci 114(19):4899–4904

    Article  Google Scholar 

  • Han S, Bian H, Zhang Y, Wu J, Wang Y, Tie X, Li Y, Li X, Yao Q (2012) Effect of aerosols on visibility and radiation in spring 2009 in Tianjin, China. Aerosol Air Qual Res 12:211–217

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis, the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 1535 pp

    Google Scholar 

  • Jacobson MZ (2002) Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res Atmos 107(D19):ACH 16-1–ACH 16-22

    Article  Google Scholar 

  • Jayachandran VN, Babu SNS, Vaishya A, Gogoi MM, Nair VS, Satheesh SK, Moorthy KK (2019) Altitude profiles of CCN characteristics across the Indo-Gangetic Plain prior 5 to the onset of the Indian summer monsoon. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2019-571

  • Jin M (2006) MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan Plateau. Geophys Res Lett 33(19):L19707. https://doi.org/10.1029/2006GL026713

    Article  Google Scholar 

  • Jones TA, Christopher SA, Quaas J (2009) A six-year satellite-based assessment of the regional variations in aerosol indirect effects. Atmos Chem Phys 9(12):4091–4114

    Article  Google Scholar 

  • Kang N, Kumar KR, Yin Y, Diao Y, Yu X (2015) Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data (2003–2013): impact on cloud formation and climate change. Aerosol Air Qual Res 15:958–973

    Article  Google Scholar 

  • Kant S, Panda J, Gautam R, Wang PK, Singh SP (2017) Significance of aerosols influencing weather and climate over Indian region. Int J Earth Atmos Sci 4:1–20

    Google Scholar 

  • Kant S, Panda J, Pani SK, Wang PK (2019a) Long-term study of aerosol–cloud–precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season. Theor Appl Climatol 136:605–626

    Article  Google Scholar 

  • Kant S, Panda J, Gautam R (2019b) A seasonal analysis of aerosol-cloud-radiation interaction over Indian region during 2000–2017. Atmos Environ 201:212–222

    Article  Google Scholar 

  • Kant S, Panda J, Manoj MG (2019c) A satellite observation-based analysis of aerosol-cloud-precipitation interaction during the February 2016 unseasonal heatwave episode over Indian region. Aerosol Air Qual Res 19:1508–1525

    Article  Google Scholar 

  • Kant S, Panda J, Rao P, Sarangi C, Ghude SD (2021) Study of aerosol-cloud-precipitation-meteorology interaction during a distinct weather event over the Indian region using WRF-Chem. Atmos Res 247:105144. https://doi.org/10.1016/j.atmosres.2020.105144

    Article  Google Scholar 

  • Khain AP, BenMoshe N, Pokrovsky A (2008) Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J Atmos Sci 65(6):1721–1748

    Article  Google Scholar 

  • Kim YH, Baik JJ (2002) Maximum urban heat island intensity in Seoul. J Appl Meteorol 41(6):651–659

    Article  Google Scholar 

  • Kim SW, Berthier S, Raut JC, Chazette P, Dulac F, Yoon SC (2008) Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos Chem Phys 8(13):3705–3720

    Article  Google Scholar 

  • Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6(8):1587–1606

    Article  Google Scholar 

  • Koren I, Kaufman YJ, Remer LA, Martins JV (2004) Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303(5662):1342–1345

    Article  Google Scholar 

  • Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y (2005) Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys Res Lett 32(14):L14828. https://doi.org/10.1029/2005GL023187

    Article  Google Scholar 

  • Koren I, Feingold G, Remer LA (2010) The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? Atmos Chem Phys 10(18):8855–8872

    Article  Google Scholar 

  • Koren I, Altaratz O, Remer LA, Feingold G, Martins JV, Heiblum RH (2012) Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat Geosci 5:118–122

    Article  Google Scholar 

  • Koren I, Dagan G, Altaratz O (2014) From aerosol-limited to invigoration of warm convective clouds. Science 344(6188):1143–1146

    Article  Google Scholar 

  • Kulkarni AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr Sci 92(1):69–74

    Google Scholar 

  • Lebsock MD, Stephens GL, Kummerow C (2008) Multisensor satellite observations of aerosol effects on warm clouds. J Geophys Res Atmos 113(D15):D15205. https://doi.org/10.1029/2008JD009876

    Article  Google Scholar 

  • Lee SS, Feingold G (2010) Precipitating cloud-system response to aerosol perturbations. Geophys Res Lett 37(23):L23806. https://doi.org/10.1029/2010GL045596

    Article  Google Scholar 

  • Lee AK, Hayden KL, Herckes P, Leaitch WR, Liggio J, Macdonald AM, Abbatt JPD (2012) Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing. Atmos Chem Phys 12(15):7103–7116

    Article  Google Scholar 

  • Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4:888–894

    Article  Google Scholar 

  • Li Z, Lau WM, Ramanathan V, Wu G, Ding Y, Manoj MG, Liu J, Qian Y, Li J, Zhou T, Fan J (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54(4):866–929

    Article  Google Scholar 

  • Lin JC, Matsui T, Pielke RA Sr, Kummerow C (2006) Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study. J Geophys Res Atmos 111:D19204. https://doi.org/10.1029/2005JD006884

    Article  Google Scholar 

  • Liu Y, Leeuw GD, Kerminen VM, Zhang J, Zhou P, Nie W, Qi X, Hong J, Wang Y, Ding A, Guo H (2017) Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations. Atmos Chem Phys 17(9):5623–5641

    Article  Google Scholar 

  • McCoy DT, Bender FM, Mohrmann JKC, Hartmann DL, Wood R, Grosvenor DP (2017) The global aerosol-cloud first indirect effect estimated using MODIS, MERRA, and AeroCom. J Geophys Res Atmos 122(3):1779–1796

    Article  Google Scholar 

  • Medeiros B, Stevens B (2011) Revealing differences in GCM representations of low clouds. Clim Dyn 36(1–2):385–399

    Article  Google Scholar 

  • Mohan M, Payra S (2014) Aerosol number concentrations and visibility during dense fog over a subtropical urban site. J Nanomater 2014:495457. https://doi.org/10.1155/2014/495457

    Article  Google Scholar 

  • Niu F, Li Z (2012) Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos Chem Phys 12(18):8491–8498

    Article  Google Scholar 

  • Padmakumari B, Maheskumar RS, Harikishan G, Morwal SB, Prabha TV, Kulkarni JR (2013) In situ measurements of aerosol vertical and spatial distributions over continental India during the major drought year 2009. Atmos Environ 80:107–121

    Article  Google Scholar 

  • Paramonov M, Kerminen VM, Gysel M, Aalto PP, Andreae MO, Asmi E, Baltensperger U, Bougiatioti A, Brus D, Frank GP, Good N (2015) A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmos Chem Phys 15(21):12211–12229

    Article  Google Scholar 

  • Penner JE, Dong X, Chen Y (2004) Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature 427:231–234

    Article  Google Scholar 

  • Pyrina M, Hatzianastassiou N, Matsoukas C, Fotiadi A, Papadimas CD, Pavlakis KG, Vardavas I (2015) Cloud effects on the solar and thermal radiation budgets of the Mediterranean basin. Atmos Res 152:14–28

    Article  Google Scholar 

  • Quaas J, Boucher O, Bellouin N, Kinne S (2008) Satellite-based estimate of the direct and indirect aerosol climate forcing. J Geophys Res Atmos 113:D05204. https://doi.org/10.1029/2007JD008962

    Article  Google Scholar 

  • Quaas J, Stevens B, Stier P, Lohmann U (2010) Interpreting the cloud cover–aerosol optical depth relationship found in satellite data using a general circulation model. Atmos Chem Phys 10(13):6129–6135

    Article  Google Scholar 

  • Rajeevan M, Srinivasan J (2000) Net cloud radiative forcing at the top of the atmosphere in the Asian monsoon region. J Clim 13(3):650–657

    Article  Google Scholar 

  • Ramanathan VLRD, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243(4887):57–63

    Article  Google Scholar 

  • Ramanathan VCPJ, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124

    Article  Google Scholar 

  • Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287(5459):1793–1796

    Article  Google Scholar 

  • Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci 98(11):5975–5980

    Article  Google Scholar 

  • Rosenfeld D, Woodley WL, Lerner A, Kelman G, Lindsey DT (2008) Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J Geophys Res Atmos 113:D04208. https://doi.org/10.1029/2007JD008600

    Article  Google Scholar 

  • Rosenfeld D, Andreae MO, Asmi A, Chin M, de Leeuw G, Donovan DP, Kahn R, Kinne S, Kivekäs N, Kulmala M, Lau W (2014) Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophys 52(4):750–808

    Article  Google Scholar 

  • Sanap SD, Pandithurai G (2015) The effect of absorbing aerosols on Indian monsoon circulation and rainfall: a review. Atmos Res 164:318–327

    Article  Google Scholar 

  • Saud T, Dey S, Das S, Dutta S (2016) A satellite-based 13-year climatology of net cloud radiative forcing over the Indian monsoon region. Atmos Res 182:76–86

    Article  Google Scholar 

  • Schmale J, Henning S, Decesari S, Henzing B, Keskinen H, Sellegri K, Ovadnevaite J, Pöhlker ML, Brito J, Bougiatioti A, Kristensson A (2018) Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmos Chem Phys 18(4):2853–2881

    Article  Google Scholar 

  • Shepherd JM (2005) A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9(12):1–27

    Article  Google Scholar 

  • Small JD, Jiang JH, Su H, Zhai C (2011) Relationship between aerosol and cloud fraction over Australia. Geophys Res Lett 38(23):L23802. https://doi.org/10.1029/2011GL049404

    Article  Google Scholar 

  • Stachlewska I, Samson M, Zawadzka O, Harenda K, Janicka L, Poczta P, Szczepanik D, Heese B, Wang D, Borek K, Tetoni E (2018) Modification of local urban aerosol properties by long-range transport of biomass burning aerosol. Remote Sens 10(3):412. https://doi.org/10.3390/rs10030412

    Article  Google Scholar 

  • Tao WK, Chen JP, Li Z, Wang C, Zhang C (2012) Impact of aerosols on convective clouds and precipitation. Rev Geophys 50(2):RG2001. https://doi.org/10.1029/2011RG000369

    Article  Google Scholar 

  • Tripathi SN, Dey S, Chandel A, Srivastava S, Singh RP, Holben BN (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23(4):1093–1101

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the short-wave albedo of clouds. J Atmos Sci 34(7):1149–1152

    Article  Google Scholar 

  • Vinoj V, Rasch PJ, Wang H, Yoon JH, Ma PL, Landu K, Singh B (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7(4):308–313

    Article  Google Scholar 

  • Wang PK (2013) Physics and dynamics of clouds and precipitation. Cambridge University Press. ISBN: 9780511794285. https://doi.org/10.1017/CBO9780511794285

  • Wang F, Guo J, Wu Y, Zhang X, Deng M, Li X, Zhang J, Zhao J (2014) Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China. Atmos Environ 84:122–132

    Article  Google Scholar 

  • Wright ME, Atkinson DB, Ziemba L, Griffin R, Hiranuma N, Brooks S, Lefer B, Flynn J, Perna R, Rappenglück B, Luke W (2010) Extensive aerosol optical properties and aerosol mass related measurements during TRAMP/TexAQS 2006–implications for PM compliance and planning. Atmos Environ 44(33):4035–4044

    Article  Google Scholar 

  • Yu H, Liu SC, Dickinson RE (2002) Radiative effects of aerosols on the evolution of the atmospheric boundary layer. J Geophys Res Atmos 107(D12):4142. https://doi.org/10.1029/2001JD000754

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagabandhu Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, J., Kant, S. (2021). Impact of Urban and Semi-urban Aerosols on the Cloud Microphysical Properties and Precipitation. In: Tiwari, S., Saxena, P. (eds) Air Pollution and Its Complications. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-70509-1_3

Download citation

Publish with us

Policies and ethics