Skip to main content

Defects in Intrinsic and Innate Immunity

  • Chapter
  • First Online:
Cellular Primary Immunodeficiencies

Abstract

The defects in intrinsic and innate immunity are a group of monogenic diseases in which there is a numeric and/or functional defect of the cellular components of innate immunity, not included in phagocyte defects or complement defects. It is a very diverse group of primary immunodeficiencies (PID) or inborn errors of immunity (IEI), both immunologically and clinically, but all share that (1) microbial susceptibility is usually very selective and from an early age (infant), and (2) commonly used immunological studies to discard a PID (lymphocyte studies, immunoglobulin dosage, protein vaccine responses) are usually normal; thus, innate immune PID’s diagnosis will require specific immunological tests.

These deficiencies are encompassed in group VI of PID classification of the International Union of Immunological Societies expert committee (now called Inborn Errors of Immunity Committee) (Tangye et al., J Clin Immunol 40:24-64; 2020). They represent 1.5% of all PIDs (Modell et al., Immunol Res 66:367–80; 2018). This group is artificially divided into four subgroups depending on the microorganism to which patients manifest susceptibility (pyogenic bacteria, mycobacteria, virus, or fungus). In this chapter, we will follow this phenotypic approach (Bousfiha et al., J Clin Immunol 38:129–43; 2018), which we believe is more useful for clinicians when approaching a patient with a suspected PID.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A et al (2020) Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40:24–64

    Article  PubMed  PubMed Central  Google Scholar 

  2. Modell V, Orange JS, Quinn J, Modell F (2018) Global report on primary immunodeficiencies: 2018 update from the Jeffrey Modell Centers Network on disease classification, regional trends, treatment modalities, and physician reported outcomes. Immunol Res 66(3):367–380

    Article  CAS  PubMed  Google Scholar 

  3. Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W et al (2018) The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol 38(1):129–143

    Article  PubMed  Google Scholar 

  4. Blumenthal B (1954) A case of cutaneous tuberculosis: provoked by BCG-vaccination? Acta Derm Venereol 34(6):474–481

    CAS  PubMed  Google Scholar 

  5. Groth-Petersen E (1952) Tuberculous abscess associated with BCG vaccination. Ugeskr Laeger 114(42):1503–1504

    CAS  PubMed  Google Scholar 

  6. Wasz-Hockert O (1954) Bacterial meningitis in connection with BCG vaccination; report of a case. Ann Med Intern Fenn 43(1):77–80

    CAS  PubMed  Google Scholar 

  7. Casanova J-L (2015) Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A 112(51):7128–7137

    Article  CAS  Google Scholar 

  8. Engbaek HC (1964) Three cases in the same family of fatal infection with M. Avium. Acta Tuberc Pneumol Scand 45:105–117

    CAS  PubMed  Google Scholar 

  9. Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, NEWPORT M et al (1996) Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med 335(26):1956–1961

    Article  CAS  PubMed  Google Scholar 

  10. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R et al (1996) A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335(26):1941–1949

    Article  CAS  PubMed  Google Scholar 

  11. Feinberg J, Fieschi C, Doffinger R, Feinberg M, Leclerc T, Boisson-Dupuis S et al (2004) Bacillus Calmette Guérin triggers the IL-12/IFN-γ axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between monocytes, NK, and T lymphocytes. Eur J Immunol 34(11):3276–3284

    Article  CAS  PubMed  Google Scholar 

  12. van de Vosse E, Haverkamp MH, Ramirez-Alejo N, Martinez-Gallo M, Blancas-Galicia L, Metin A et al (2013) IL-12Rβ1 deficiency: mutation update and description of the IL12RB1 variation database. Hum Mutat 34(10):1329–1339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. de Beaucoudrey L, Samarina A, Bustamante J, Cobat A, Boisson-Dupuis S, Feinberg J et al (2010) Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore) 89(6):381–402

    Article  CAS  Google Scholar 

  14. Altare F, Lammas D, Revy P, Jouanguy E, Döffinger R, Lamhamedi S et al (1998) Rapid publication inherited interleukin 12 deficiency in a child with Bacille Calmette-Guérin and Salmonella enteritidis disseminated infection. J Clin Invest 102(12):2035–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prando C, Samarina A, Bustamante J, Boisson-Dupuis S, Cobat A, Picard C et al (2013) Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine (Baltimore) 92(2):109–122

    Article  CAS  Google Scholar 

  16. Martínez-Barricarte R, Markle JG, Ma CS, Deenick EK, Ramírez-Alejo N, Mele F et al (2018) Human IFN-immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol 30(3)

    Google Scholar 

  17. Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD, Yuan C et al (2015) Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517(7532):89–93

    Article  CAS  PubMed  Google Scholar 

  18. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D et al (2012) Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337(6102):1684–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kong X-F, Martinez-Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick EK et al (2018) Disruption of an anti-mycobacterial circuit between dendritic and Th cells in human SPPL2a deficiency. Nat Immunol 19(9):973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosain J, Kong XF, Martinez-Barricarte R, Oleaga-Quintas C, Ramirez-Alejo N, Markle J et al (2019) Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol Cell Biol 97(4):360–367

    Article  PubMed  Google Scholar 

  21. Kreins AY, Ciancanelli MJ, Okada S, Kong X-F, Ramírez-Alejo N, Kilic SS et al (2015) Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med 212(10):1641–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerner G, Ramirez-Alejo N, Seeleuthner Y, Yang R, Ogishi M, Cobat A et al (2019) Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc Natl Acad Sci U S A 116(21):10430–10434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M et al (2015) Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349(6248):606–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kerner G, Guérin A, Oleaga-Quintas C, Rosain J, Rappaport F, Le Voyer T, et al. (2019) Mycobacterial disease due to inherited IFN-gamma deficiency. ESID 2019; Brussels.

    Google Scholar 

  25. Jouanguy E, Dupuis S, Pallier A, Döffinger R, Fondanèche M-C, Fieschi C et al (2000) In a novel form of IFN-γ receptor 1 deficiency, cell surface receptors fail to bind IFN-γ. J Clin Invest 105(10):1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R et al (2004) Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet 364(9451):2113–2121

    Article  CAS  PubMed  Google Scholar 

  27. Sologuren I, Boisson-Dupuis S, Pestano J, Vincent QB, Fernández-Pérez L, Chapgier A et al (2011) Partial recessive IFN-γR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet 20(8):1509–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jouanguy E, Lamhamedi-Cherradi S, Lammas D, Dorman SE, Fondanèche MC, Dupuis S et al (1999) A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet 21(4):370–378

    Article  CAS  PubMed  Google Scholar 

  29. Rosenzweig SD, Schwartz OM, Brown MR, Leto TL, Holland SM (2004) Characterization of a dipeptide motif regulating IFN-receptor 2 plasma membrane accumulation and IFN-responsiveness. J Immunol 173(6):3991–3999

    Article  CAS  PubMed  Google Scholar 

  30. Moncada-Velez M, Martinez-Barricarte R, Bogunovic D, Kong X-F, Blancas-Galicia L, Tirpan C et al (2013) Partial IFN- R2 deficiency is due to protein misfolding and can be rescued by inhibitors of glycosylation. Blood 122(14):2390–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chapgier A, Boisson-Dupuis S, Jouanguy E, Vogt G, Feinberg J, Prochnicka-Chalufour A et al (2006) Novel STAT1 alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet 2(8):e131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dupuis S (2001) Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293(5528):300–303

    Article  CAS  PubMed  Google Scholar 

  33. Hirata O, Okada S, Tsumura M, Kagawa R, Miki M, Kawaguchi H et al (2013) Heterozygosity for the Y701C STAT1 mutation in a multiplex kindred with multifocal osteomyelitis. Haematologica 98(10):1641–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eletto D, Burns SO, Angulo I, Plagnol V, Gilmour KC, Henriquez F et al (2016) Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat Commun 7:13992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C et al (2011) Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12(3):213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bustamante J, Picard C, Boisson-Dupuis S, Abel L, J-LL C (2011) Genetic lessons learned from X-linked Mendelian susceptibility to mycobacterial diseases. Ann N Y Acad Sci 1246:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bustamante J, Picard C, Fieschi C, Filipe-Santos O, Feinberg J, Perronne C et al (2006) A novel X-linked recessive form of Mendelian susceptibility to mycobacterial disease. J Med Genet 44(2):e65–e65

    Article  Google Scholar 

  38. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J et al (2011) IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 365(2):127–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bustamante J, Boisson-Dupuis SSS, Abel L, Casanova J-L (2014) Mendelian susceptibility to mycobacterial disease: Genetic, immunological, and clinical features of inborn errors of IFN gamma immunity. Semin Immunol 26(6):454–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J et al (2006) Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 18(6):347–361

    Article  CAS  PubMed  Google Scholar 

  41. Chapgier A, Wynn RF, Jouanguy E, Filipe-Santos O, Zhang S, Feinberg J et al (2006) Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J Immunol 176(8):5078–5083

    Article  CAS  PubMed  Google Scholar 

  42. Boisson-Dupuis S, El Baghdadi J, Parvaneh N, Bousfiha A, Bustamante J, Feinberg J et al (2011) IL-12Rβ1 deficiency in two of fifty children with severe tuberculosis from Iran, Morocco, and Turkey. Cardona P-J, editor. PLoS One 6(4):e18524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boisson-Dupuis S, Bustamante J, El-Baghdadi J, Camcioglu Y, Parvaneh N, El Azbaoui S et al (2015) Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev 264(1):103–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fieschi C (2004) A novel form of complete IL-12/IL-23 receptor 1 deficiency with cell surface-expressed nonfunctional receptors. Blood 104(7):2095–2101

    Article  CAS  PubMed  Google Scholar 

  45. Ouederni M, Sanal O, Ikinciogullari A, Tezcan I, Dogu F, Sologuren I et al (2014) Clinical features of Candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin Infect Dis 58(2):204–213

    Article  CAS  PubMed  Google Scholar 

  46. Obinata K, Lee T, Niizuma T, Kinoshita K, Shimizu T, Hoshina T et al (2013) Two cases of partial dominant interferon-γ receptor 1 deficiency that presented with different clinical courses of bacille Calmette-Guérin multiple osteomyelitis. J Infect Chemother 19(4):757–760

    Article  PubMed  Google Scholar 

  47. Tsumura M, Okada S, Sakai H, Yasunaga S, Ohtsubo M, Murata T et al (2012) Dominant-negative STAT1 SH2 domain mutations in unrelated patients with Mendelian susceptibility to mycobacterial disease. Hum Mutat 33(9):1377–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jirapongsananuruk O, Luangwedchakarn V, Niemela JE, Pacharn P, Visitsunthorn N, Thepthai C et al (2012) Cryptococcal osteomyelitis in a child with a novel compound mutation of the IL12RB1 gene. Asian Pac J Allergy Immunol 30(1):79–82

    CAS  PubMed  Google Scholar 

  49. Boudjemaa S, Dainese L, Héritier S, Masserot C, Hachemane S, Casanova J-L et al (2016) Disseminated BCG osteomyelitis related to STAT 1 gene deficiency mimicking a metastatic neuroblastoma. Pediatr Dev Pathol 3:16-02-1778-CR.1

    Article  Google Scholar 

  50. Shamriz O, Engelhard D, Rajs AP, Kaidar-Shwartz H, Casanova J-L, Averbuch D (2013) Mycobacterium szulgai chronic multifocal osteomyelitis in an adolescent with inherited STAT1 deficiency. Pediatr Infect Dis J 32(12):1345–1347

    Article  PubMed  Google Scholar 

  51. Sasaki Y, Nomura A, Kusuhara K, Takada H, Ahmed S, Obinata K et al (2002) Genetic basis of patients with bacille Calmette-Guerin osteomyelitis in Japan: identification of dominant partial interferon-gamma receptor 1 deficiency as a predominant type. J Infect Dis 185(5):706–709

    Article  CAS  PubMed  Google Scholar 

  52. Arend S (2001) Multifocal osteomyelitis caused by nontuberculous mycobacteria in patients with a genetic defect of the interferon-Î3 receptor. Neth J Med 59(3):140–151

    Article  CAS  PubMed  Google Scholar 

  53. Cardenes M, Angel-Moreno A, Fieschi C, Sologuren I, Colino E, Molines A et al (2010) Oesophageal squamous cell carcinoma in a young adult with IL-12R beta 1 deficiency. J Med Genet 47(9):635–637

    Article  CAS  PubMed  Google Scholar 

  54. Toyoda H, Ido M, Nakanishi K, Nakano T, Kamiya H, Matsumine A et al (2010) Multiple cutaneous squamous cell carcinomas in a patient with interferon gamma receptor 2 (IFN gamma R2) deficiency. J Med Genet 47(9):631–634

    Article  CAS  PubMed  Google Scholar 

  55. Donadieu J, Lamant M, Fieschi C, de Fontbrune FS, Caye A, Ouachee M et al (2018) Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica 103(8):1278–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sologuren I, Martínez-Saavedra MT, Solé-Violán J, de Borges de Oliveira E, Betancor E, Casas I et al (2018) Lethal influenza in two related adults with inherited GATA2 deficiency. J Clin Immunol 38(4):513–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cohen JI, Dropulic L, Hsu AP, Zerbe CS, Krogmann T, Dowdell K et al (2016) Association of GATA2 deficiency with severe primary Epstein-Barr virus (EBV) infection and EBV-associated cancers. Clin Infect Dis 63(1):41–47

    Article  PubMed  PubMed Central  Google Scholar 

  58. Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Becerra JCA et al (2016) Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 127(25):3154–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Esteve-Solé A, Sologuren I, Martínez-Saavedra MT, Deyà-Martínez À, Oleaga-Quintas C, Martinez-Barricarte R et al (2018) Laboratory evaluation of the IFN-γ circuit for the molecular diagnosis of Mendelian susceptibility to mycobacterial disease. Crit Rev Clin Lab Sci 55(3):184–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Fieschi C, Dupuis S, Picard C, Smith CI, Holland SM, Casanova JL (2001) High levels of interferon gamma in the plasma of children with complete interferon gamma receptor deficiency. Pediatrics 107(4):E48

    Article  CAS  PubMed  Google Scholar 

  61. Kong X-FF, Vogt G, Itan Y, Macura-Biegun A, Szaflarska A, Kowalczyk D et al (2013) Haploinsufficiency at the human IFNGR2 locus contributes to mycobacterial disease. Hum Mol Genet 22(4):769–781

    Article  CAS  PubMed  Google Scholar 

  62. Ehlayel M, de Beaucoudrey L, Fike F, Nahas SA, Feinberg J, Casanova J-LL et al (2008) Simultaneous presentation of 2 rare hereditary immunodeficiencies: IL-12 receptor beta1 deficiency and ataxia-telangiectasia. J Allergy Clin Immunol 122(6):1217–1219

    Article  PubMed  Google Scholar 

  63. Rosenzweig SD, Dorman SE, Uzel G, Shaw S, Scurlock A, Brown MR et al (2004) A novel mutation in IFN-gamma receptor 2 with dominant negative activity: biological consequences of homozygous and heterozygous states. J Immunol 173(6):4000–4008

    Article  CAS  PubMed  Google Scholar 

  64. Kong X-FF, Vogt G, Chapgier A, Lamaze C, Bustamante J, Prando C et al (2010) A novel form of cell type-specific partial IFN-gammaR1 deficiency caused by a germ line mutation of the IFNGR1 initiation codon. Hum Mol Genet 19(3):434–444

    Article  CAS  PubMed  Google Scholar 

  65. Sampaio EP, Bax HI, Hsu AP, Kristosturyan E, Pechacek J, Chandrasekaran P et al (2012) A novel STAT1 mutation associated with disseminated mycobacterial disease. J Clin Immunol 32(4):681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Naviglio S, Soncini E, Vairo D, Lanfranchi A, Badolato R, Porta F (2017) Long-term survival after hematopoietic stem cell transplantation for complete STAT1 deficiency. J Clin Immunol 37(7):701–706

    Article  CAS  PubMed  Google Scholar 

  67. Salem S, Langlais D, Lefebvre F, Bourque G, Bigley V, Haniffa M et al (2014) Functional characterization of the human dendritic cell immunodeficiency associated with the IRF8(K108E) mutation. Blood 124(12):1894–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ying W, Liu D, Dong X, Wang W, Hui X, Hou J et al (2019) Current status of the management of mendelian susceptibility to mycobacterial disease in mainland China. J Clin Immunol 39(6):600–610

    Article  CAS  PubMed  Google Scholar 

  69. Reed B, Dolen WK (2018) The child with recurrent mycobacterial disease. Curr Allergy Asthma Rep 18(8):44

    Article  PubMed  CAS  Google Scholar 

  70. Olbrich P, Martínez-Saavedra MT, Perez-Hurtado JM, Sanchez C, Sanchez B, Deswarte C et al (2015) Diagnostic and therapeutic challenges in a child with complete Interferon-γ Receptor 1 deficiency. Pediatr Blood Cancer 62(11):2036–2039

    Article  PubMed  PubMed Central  Google Scholar 

  71. Martínez-Barricarte R, Megged O, Stepensky P, Casimir P, Moncada-Velez M, Averbuch D et al (2014) Mycobacterium simiae infection in two unrelated patients with different forms of inherited IFN-γR2 deficiency. J Clin Immunol 34(8):904–909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Bandari AK, Muthusamy B, Bhat S, Govindaraj P, Rajagopalan P, Dalvi A et al (2019) A novel splice site mutation in IFNGR2 in patients with primary immunodeficiency exhibiting susceptibility to mycobacterial diseases. Front Immunol 10:1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oleaga-Quintas C, Deswarte C, Moncada-Vélez M, Metin A, Krishna Rao I, Kanık-Yüksek S et al (2018) A purely quantitative form of partial recessive IFN-γR2 deficiency caused by mutations of the initiation or second codon. Hum Mol Genet 27(22):3919–3935

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Phoompoung P, Ankasekwinai N, Pithukpakorn M, Foongladda S, Umrod P, Suktitipat B et al (2017) Factors associated with acquired anti IFN-γ autoantibody in patients with nontuberculous mycobacterial infection. PLoS One 12(4):1–10

    Article  CAS  Google Scholar 

  75. Hong GH, Ortega-Villa AM, Hunsberger S, Chetchotisakd P, Anunnatsiri S, Mootsikapun P et al (2019) Natural history and evolution of anti-interferon-γ autoantibody-associated immunodeficiency syndrome in Thailand and the United States. Intergovernmental panel on climate change, editor. Clin Infect Dis 58(12):7250–7257

    Google Scholar 

  76. Liew WK, Thoon KC, Chong CY, Tan NWH, Cheng DT, Chan BSW et al (2019) Juvenile-onset immunodeficiency secondary to anti-interferon-gamma autoantibodies. J Clin Immunol 39(5):512–518

    Article  CAS  PubMed  Google Scholar 

  77. Doffinger R, Helbert MR, Barcenas-Morales G, Yang K, Dupuis S, Ceron-Gutierrez L et al (2004) Autoantibodies to interferon-γ in a patient with selective susceptibility to mycobacterial infection and organ-specific autoimmunity. Clin Infect Dis 38(1):e10–e14

    Article  PubMed  Google Scholar 

  78. Chi CY, Chu CC, Liu JP, Lin CH, Ho MW, Lo WJ et al (2013) Anti-IFN-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood 121(8):1357–1366

    Article  CAS  PubMed  Google Scholar 

  79. Patel SY, Ding L, Brown MR, Lantz L, Gay T, Cohen S et al (2005) Anti-IFN-gamma autoantibodies in disseminated nontuberculous mycobacterial infections. J Immunol 175(7):4769–4776

    Article  CAS  PubMed  Google Scholar 

  80. Chetchotisakd P, Anunnatsiri S, Nanagara R, Nithichanon A, Lertmemongkolchai G (2018) Intravenous cyclophosphamide therapy for anti-IFN-gamma autoantibody-associated Mycobacterium abscessus infection. J Immunol Res 2018:1–7

    Article  CAS  Google Scholar 

  81. Jiang S, Li X, Hess NJ, Guan Y, Tapping RI (2016) TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. J Immunol 196(9):3834–3841

    Article  CAS  PubMed  Google Scholar 

  82. Picard C, Puel A, Bonnet M, Ku C-L, Bustamante J, Yang K et al (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299(5615):2076–2079

    Article  CAS  PubMed  Google Scholar 

  83. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku C-L et al (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321(5889):691–696

    Article  CAS  Google Scholar 

  84. Picard C, von Bernuth H, Ghandil P, Chrabieh M, Levy O, Arkwright PD et al (2010) Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore) 89(6):403–425

    Article  CAS  Google Scholar 

  85. Picard C, Casanova JL, Puel A (2011) Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin Microbiol Rev 24(3):490–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alsina L, Israelsson E, Altman MC, Dang KK, Ghandil P, Israel L et al (2014) A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat Immunol 15(12):1134–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frans G, Meyts I, Picard C, Puel A, Zhang S-Y, Moens L et al (2014) Addressing diagnostic challenges in primary immunodeficiencies: laboratory evaluation of Toll-like receptor- and NF-κB-mediated immune responses. Crit Rev Clin Lab Sci 51(2):112–123

    Article  CAS  PubMed  Google Scholar 

  88. von Bernuth H, Ku C-L, Rodriguez-Gallego C, Zhang S, Garty B-Z, Maródi L et al (2006) A fast procedure for the detection of defects in Toll-like receptor signaling. Pediatrics 118(6):2498–2503

    Article  Google Scholar 

  89. Weller S, Bonnet M, Delagreverie H, Israel L, Chrabieh M, Maródi L et al (2012) IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients. Blood 120(25):4992–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Routes J, Abinun M, Al-Herz W, Bustamante J, Condino-Neto A, De La Morena MT et al (2014) ICON: diagnóstico precoz de inmunodeficiencias congénitas. J Clin Immunol 34(4):398–424

    Article  CAS  PubMed  Google Scholar 

  91. Della Mina E, Borghesi A, Zhou H, Bougarn S, Boughorbel S, Israel L et al (2017) Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts. Proc Natl Acad Sci U S A 114(4):E514–E523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Israel L, Wang Y, Bulek K, Della Mina E, Zhang Z, Pedergnana V et al (2017) Human adaptive immunity rescues an inborn error of innate immunity. Cell 168(5):789–800.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bolze A, Boisson B, Bosch B, Antipenko A, Bouaziz M, Sackstein P et al (2018) Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated RPSA exons. Proc Natl Acad Sci U S A 115(34):E8007–E8016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aguilar C, Malphettes M, Donadieu J, Chandesris O, Coignard-Biehler H, Catherinot E et al (2014) Prevention of infections during primary immunodeficiency. Clin Infect Dis 59(10):1462–1470

    Article  CAS  PubMed  Google Scholar 

  95. Whitley RJ, Miller RL (2001) Review immunologic approach to herpes simplex virus. Viral Immunol 14(3):466–473. Mary Ann Liebert, Inc

    Google Scholar 

  96. Najioullah F, Bosshard S, Thouvenot D, Boibieux A, Menager B, Biron F et al (2000) Diagnosis and surveillance of herpes simplex virus infection of the central nervous system. J Med Virol 61(4):468–473

    Article  CAS  PubMed  Google Scholar 

  97. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al (2007) Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al (2007) Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12(2):131–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M et al (2011) Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208(10):2083–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P et al (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317(5844):1522–1527

    Article  CAS  PubMed  Google Scholar 

  101. Pérez de Diego R, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C et al (2010) Human TRAF3 adaptor molecule deficiency leads to impaired toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33(3):400–411

    Article  PubMed  CAS  Google Scholar 

  102. Sancho-Shimizu V, Pérez De Diego R, Lorenzo L, Halwani R, Alangari A, Israelsson E et al (2011) Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest 121(12):4889–4902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Herman M, Ciancanelli M, Ou YH, Lorenzo L, Klaudel-Dreszler M, Pauwels E et al (2012) Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med 209(9):1567–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A, Yang K et al (2006) Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314(5797):308–312

    Article  CAS  PubMed  Google Scholar 

  105. Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE et al (2015) Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med 212(9):1371–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lim HK, Huang SXL, Chen J, Kerner G, Gilliaux O, Bastard P et al (2019) Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med 216(9):2038–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang SY, Herman M, Ciancanelli MJ, Pérez de Diego R, Sancho-Shimizu V, Abel L et al (2013) TLR3 immunity to infection in mice and humans. Curr Opin Immunol 25:19–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A et al (2012) Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491(7426):769–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tunkel AR, Glaser CA, Bloch KC, Sejvar JJ, Marra CM, Roos KL et al (2008) The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 47(3):303–327

    Article  CAS  PubMed  Google Scholar 

  110. Abel L, Plancoulaine S, Jouanguy E, Zhang S-Y, Mahfoufi N, Nicolas N et al (2010) Age-dependent mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood. J Pediatr 157(4):623–629.e1

    Article  PubMed  Google Scholar 

  111. Kneen R, Michael BD, Menson E, Mehta B, Easton A, Hemingway C et al (2012) Management of suspected viral encephalitis in children—Association of British Neurologists and British Paediatric Allergy, Immunology and Infection Group National Guidelines. J Infect 64(5):449–477

    Article  CAS  PubMed  Google Scholar 

  112. Ramoz N, Rueda LA, Bouadjar B, Montoya LS, Orth G, Favre M (2002) Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32(4):579–581

    Article  CAS  PubMed  Google Scholar 

  113. de Jong SJ, Créquer A, Matos I, Hum D, Gunasekharan V, Lorenzo L et al (2018) The human CIB1–EVER1–EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J Exp Med 215(9):2289–2310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Vahidnezhad H, Youssefian L, Saeidian AH, Mansoori B, Jazayeri A, Azizpour A et al (2019) A CIB1 splice-site founder mutation in families with typical epidermodysplasia verruciformis. J Invest Dermatol 139(5):1195–1198

    Article  CAS  PubMed  Google Scholar 

  115. Leiding JW, Holland SM (2012) Warts and all: human papillomavirus in primary immunodeficiencies. J Allergy Clin Immunol 130:1030–1048. NIH Public Access

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Heusinkveld LE, Yim E, Yang A, Azani AB, Liu Q, Gao JL et al (2017) Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency. Expert Opin Orphan Drugs 5:813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kawai T, Malech HL (2009) WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol 16:20–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hernandez N, Bucciol G, Moens L, Le Pen J, Shahrooei M, Goudouris E et al (2019) Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med 216(9):2057–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S et al (2015) Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348(6233):448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lamborn IT, Jing H, Zhang Y, Drutman SB, Abbott JK, Munir S et al (2017) Recurrent rhinovirus infections in a child with inherited MDA5 deficiency. J Exp Med 214(7):1949–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Asgari S, Schlapbach LJ, Anchisi S, Hammer C, Bartha I, Junier T et al (2017) Severe viral respiratory infections in children with IFIH1 loss-of-function mutations. Proc Natl Acad Sci U S A 114(31):8342–8347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zaki M, Thoenes M, Kawalia A, Nürnberg P, Kaiser R, Heller R et al (2017) Recurrent and prolonged infections in a child with a homozygous IFIH1 nonsense mutation. Front Genet 8:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Duncan CJ, Mohamad SM, Young DF, Skelton AJ, Leahy TR, Munday DC et al (2015) Human IFNAR2 deficiency: lessons for antiviral immunity. Sci Transl Med 7(307):307ra154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Boisson-Dupuis S, Kong XF, Okada S, Cypowyj S, Puel A, Abel L et al (2012) Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol 24(4):364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Burns C, Cheung A, Stark Z, Choo S, Downie L, White S et al (2016) A novel presentation of homozygous loss-of-function STAT-1 mutation in an infant with hyperinflammation-A case report and review of the literature. J Allergy Clin Immunol Pract 4(4):777–779

    Article  PubMed  Google Scholar 

  126. Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S et al (2003) Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 33(3):388–391

    Article  CAS  PubMed  Google Scholar 

  127. Vairo D, Tassone L, Tabellini G, Tamassia N, Gasperini S, Bazzoni F et al (2011) Severe impairment of IFN-gamma and IFN-alpha responses in cells of a patient with a novel STAT1 splicing mutation. Blood 118(7):1806–1817

    Article  CAS  PubMed  Google Scholar 

  128. Hambleton S, Goodbourn S, Young DF, Dickinson P, Mohamad SM, Valappil M et al (2013) STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci U S A 110(8):3053–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Moens L, Van Eyck L, Jochmans D, Mitera T, Frans G, Bossuyt X et al (2017) A novel kindred with inherited STAT2 deficiency and severe viral illness. J Allergy Clin Immunol 139(6):1995–1997.e9

    Article  PubMed  Google Scholar 

  130. Shahni R, Cale CM, Anderson G, Osellame LD, Hambleton S, Jacques TS et al (2015) Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission. Brain 138(Pt 10):2834–2846

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hernandez N, Melki I, Jing H, Habib T, Huang SSY, Danielson J et al (2018) Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med 215(10):2567–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. de Vries E, Koene HR, Vossen JM, Gratama JW, von dem Borne AE, Waaijer JL et al (1996) Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood 88(8):3022–3027

    Article  PubMed  Google Scholar 

  133. Grier JT, Forbes LR, Monaco-Shawver L, Oshinsky J, Atkinson TP, Moody C et al (2012) Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest 122(10):3769–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Brown GD, Denning DW, Levitz SM (2012) Tackling human fungal infections. Science 336(6082):647

    Article  CAS  PubMed  Google Scholar 

  135. Schmiedel Y, Zimmerli S (2016) Common invasive fungal diseases: an overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia. Swiss Med Wkly 146(February):w14281

    PubMed  Google Scholar 

  136. Okada S, Puel A, Casanova J-L, Kobayashi M (2016) Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin Transl Immunol 5(12):e114

    Article  CAS  Google Scholar 

  137. Pana ZD, Roilides E, Warris A, Groll AH, Zaoutis T (2017) Epidemiology of invasive fungal disease in children. J Pediatr Infect Dis Soc 6(1):S3–S11

    Article  Google Scholar 

  138. Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova JL et al (2013) Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr 25:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Drummond RA, Franco LM, Lionakis MS (2018) Human CARD9: A critical molecule of fungal immune surveillance. Front Immunol 9(AUG):1–7

    Google Scholar 

  140. Alves de Medeiros AK, Lodewick E, Bogaert DJA, Haerynck F, Van daele S, Lambrecht B et al (2016) Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol 36(3):204–209

    Article  PubMed  Google Scholar 

  141. Corvilain E, Casanova JL, Puel A (2018) Inherited CARD9 deficiency: invasive disease caused by ascomycete fungi in previously healthy children and adults. J Clin Immunol 38(6):656–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gavino C, Cotter A, Lichtenstein D, Lejtenyi D, Fortin C, Legault C et al (2014) CARD9 deficiency and spontaneous central nervous system candidiasis: Complete clinical remission with GM-CSF therapy. Clin Infect Dis 59(1):81–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Celmeli F, Oztoprak N, Turkkahraman D, Seyman D, Mutlu E, Frede N et al (2016) Successful granulocyte colony-stimulating factor treatment of relapsing Candida Albicans meningoencephalitis caused by CARD9 deficiency. Pediatr Infect Dis J 35(4):428–431

    Article  PubMed  Google Scholar 

  144. Queiroz-Telles F, Mercier T, Maertens J, Sola CBS, Bonfim C, Lortholary O et al (2019) Successful allogenic stem cell transplantation in patients with inherited CARD9 deficiency. J Clin Immunol 39(5):462–469

    Article  CAS  PubMed  Google Scholar 

  145. Huppler AR, Bishu S, Gaffen SL (2012) Mucocutaneous candidiasis: The IL-17 pathway and implications for targeted immunotherapy. Arthritis Res Ther 14(4)

    Google Scholar 

  146. Carey B, Lambourne J, Porter S, Hodgson T (2019) Chronic mucocutaneous candidiasis due to gain-of-function mutation in STAT1. Oral Dis 25(3):684–692

    Article  PubMed  Google Scholar 

  147. Olbrich P, Freeman AF (2018) STAT1 and STAT3 mutations: important lessons for clinical immunologists. Expert Rev Clin Immunol 14(12):1029–1041

    Article  CAS  PubMed  Google Scholar 

  148. Toubiana J, Okada S, Hiller J, Oleastro M, Lagos Gomez M, Aldave Becerra JC et al (2016) Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 127(25):3154–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Weinacht KG, Charbonnier LM, Alroqi F, Plant A, Qiao Q, Wu H et al (2017) Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol 139(5):1629–1640.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Leiding JW, Okada S, Hagin D, Abinun M, Shcherbina A, Balashov DN et al (2018) Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J Allergy Clin Immunol 141:704–717.e5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laia Alsina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alsina, L. et al. (2021). Defects in Intrinsic and Innate Immunity. In: D'Elios, M.M., Baldari, C.T., Annunziato, F. (eds) Cellular Primary Immunodeficiencies. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-030-70107-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70107-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70106-2

  • Online ISBN: 978-3-030-70107-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics