Skip to main content

Advertisement

Log in

The Child with Recurrent Mycobacterial Disease

  • Pediatric Allergy and Immunology (W Dolen, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Many genetic conditions predispose affected individuals to opportunistic infections. A number of immunodeficiency diseases, including genetic defects termed Mendelian susceptibility to mycobacterial disease (MSMD), permit infection from many different strains of mycobacteria that would otherwise not cause disease. These include tuberculous and nontuberculous mycobacteria, and bacille Calmette-Guérin vaccine (BCG). Patients may present with infections from other organisms that depend on macrophage function for containment. Defects in multiple genes in the IL-12 and NFKB signaling pathways can cause the MSMD phenotype, some of which include IL12RB1, IL12B, IKBKG, ISG15, IFNGR1, IFNGR2, CYBB, TYK2, IRF8, and STAT1.

Recent Findings

Multiple autosomal recessive and dominant, and 2 X-linked recessive gene defects resulting in the MSMD phenotype have been reported, and others await discovery. This review presents the known gene defects and describes clinical findings that result from the mutations.

Summary

If MSMD is suspected, a careful clinical history and examination and basic immunodeficiency screening tests will narrow the differential diagnosis. A specific diagnosis requires more sophisticated laboratory investigation. Genetic testing permits a definitive diagnosis, permitting genetic counseling. Mild cases respond well to appropriate antibiotic therapy, whereas severe disease may require hematopoietic stem cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Robinson RT, Huppler AR. The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine. 2017;97:49–65. https://doi.org/10.1016/j.cyto.2017.05.015.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. • Boisson-Dupuis S, Bustamante J, El-Baghdadi J, Camcioglu Y, Parvaneh N, El Azbaoui S, et al. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev. 2015;264(1):103–20. https://doi.org/10.1111/imr.12272. This review, not limited to MSMD, focuses on predisposing factors for childhood tuberculosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. • Louvain de Souza T, de Souza Campos Fernandes RC, Azevedo da Silva J, Gomes Alves Junior V, Gomes Coelho A, Souza Faria AC, et al. Microbial disease spectrum linked to a novel IL-12Rbeta1 N-terminal signal peptide stop-gain homozygous mutation with paradoxical receptor cell-surface expression. Front Microbiol. 2017;8:616. https://doi.org/10.3389/fmicb.2017.00616. This case report describes the clinical presentation of 4 children with MSMD and reviews the features of IL12RB1 inactivation.

    Article  PubMed  PubMed Central  Google Scholar 

  4. •• Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol. 2014;26(6):454–70. https://doi.org/10.1016/j.smim.2014.09.008. This is a very detailed review of the causes of MSMD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. • Lee WI, Huang JL, Wu TS, Lee MH, Chen IJ, Yu KH, et al. Patients with inhibitory and neutralizing auto-antibodies to interferon-gamma resemble the sporadic adult-onset phenotype of Mendelian susceptibility to mycobacterial disease (MSMD) lacking Bacille Calmette-Guerin (BCG)-induced diseases. Immunobiology. 2013;218(5):762–71. https://doi.org/10.1016/j.imbio.2012.08.281. Autoantibodies to IFNγ can produce the clinical phenotype of MSMD in adults.

    Article  PubMed  CAS  Google Scholar 

  6. •• Esteve-Sole A, Sologuren I, Martinez-Saavedra MT, Deya-Martinez A, Oleaga-Quintas C, Martinez-Barricarte R, et al. Laboratory evaluation of the IFN-gamma circuit for the molecular diagnosis of Mendelian susceptibility to mycobacterial disease. Crit Rev Clin Lab Sci. 2018;55(3):184–204. https://doi.org/10.1080/10408363.2018.1444580. This article reviews the basic science of the IFNγ circuit in the context of MSMD, and offers detailed advice for laboratory investigation of patients with suspected MSMD.

    Article  PubMed  CAS  Google Scholar 

  7. Online Mendelian Inheritance in Man, OMIM® [database on the Internet]. McKusick-Nathans Institute of Genetic Medicine. Available from: https://omim.org. Accessed: 1/3/18.

  8. • Picard C, Gaspar H, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol. 2017;38:96–128. https://doi.org/10.1007/s10875-017-0464-9. This is the most recent official list of primary immunodeficiency diseases recognized by the International Union of Immunological Societies. The list, which is frequently updated, has descriptions of the MSMD conditions.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, et al. The arg753-to-gln polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Europ Resp J. 2004;23:219–23.

    Article  CAS  Google Scholar 

  10. • de Beaucoudrey L, Samarina A, Bustamante J, Cobat A, Boisson-Dupuis S, Feinberg J, et al. Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine. 2010;89(6):381–402. https://doi.org/10.1097/MD.0b013e3181fdd832. This somewhat older article is a very large case series describing clinical features of IL12RB1 deficiency.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Arias AA, Perez-Velez CM, Orrego JC, Moncada-Velez M, Rojas JL, Wilches A, et al. Severe enteropathy and hypogammaglobulinemia complicating refractory mycobacterium tuberculosis complex disseminated disease in a child with IL-12Rbeta1 deficiency. J Clin Immunol. 2017;37(7):732–8. https://doi.org/10.1007/s10875-017-0435-1.

    Article  PubMed  CAS  Google Scholar 

  12. IL-12Rβ1 deficiency: mutation update and description of the IL12RB1 variation database [database on the Internet]. LOVD. 2013. Available from: https://grenada.lumc.nl/LOVD2/mendelian_genes/home.php?select_db=IL12RB1. Accessed: April 2018.

  13. • Prando C, Samarina A, Bustamante J, Boisson-Dupuis S, Cobat A, Picard C, et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine (Baltimore). 2013;92(2):109–22. https://doi.org/10.1097/MD.0b013e31828a01f9. Although IL12B (p40) deficiency is rare, this case series describes features of 49 patients with that disorder.

    Article  CAS  Google Scholar 

  14. Fieschi C, Dupuis S, Picard C, Smith CIE, Holland SM, Casanova J-L. High levels of interferon gamma in the plasma of children with complete interferon gamma receptor deficiency. Pediatrics. 2001;107(4):E48.

    Article  PubMed  CAS  Google Scholar 

  15. Janssen R, Van Wengen A, Verhard E, De Boer T, Zomerdijk T, Ottenhoff TH, et al. Divergent role for TNF-alpha in IFN-gamma-induced killing of Toxoplasma gondii and Salmonella typhimurium contributes to selective susceptibility of patients with partial IFN-gamma receptor 1 deficiency. J Immunol. 2002;169(7):3900–7.

    Article  PubMed  CAS  Google Scholar 

  16. Storgaard M, Varming K, Herlin T, Obel N. Novel mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infections. Scand J Immunol. 2006;64(2):137–9. https://doi.org/10.1111/j.1365-3083.2006.01775.x.

    Article  PubMed  CAS  Google Scholar 

  17. Dorman SE, Holland SM. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest. 1998;101(11):2364–9. https://doi.org/10.1172/JCI2901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Vogt G, Bustamante J, Chapgier A, Feinberg J, Boisson Dupuis S, Picard C, et al. Complementation of a pathogenic IFNGR2 misfolding mutation with modifiers of N-glycosylation. J Exp Med. 2008;205(8):1729–37. https://doi.org/10.1084/jem.20071987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Eletto D, Burns SO, Angulo I, Plagnol V, Gilmour KC, Henriquez F, et al. Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat Commun. 2016;7:13992. https://doi.org/10.1038/ncomms13992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Meraro D, Gleit-Kielmanowicz M, Hauser H, Levi BZ. IFN-stimulated gene 15 is synergistically activated through interactions between the myelocyte/lymphocyte-specific transcription factors, PU.1, IFN regulatory factor-8/IFN consensus sequence binding protein, and IFN regulatory factor-4: characterization of a new subtype of IFN-stimulated response element. J Immunol. 2002;168(12):6224–31. https://doi.org/10.4049/jimmunol.168.12.6224.

    Article  PubMed  CAS  Google Scholar 

  21. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, et al. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science. 2012;337(6102):1684–8. https://doi.org/10.1126/science.1224026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD, Yuan C, et al. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature. 2015;517:89–93.

    Article  PubMed  CAS  Google Scholar 

  23. Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, et al. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;349(6248):606–13. https://doi.org/10.1126/science.aaa4282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, Olivier KN, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):1519–29. https://doi.org/10.1182/blood-2009-03-208629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Calvo KR, Vinh DC, Maric I, Wang W, Noel P, Stetler-Stevenson M, et al. Myelodysplasia in autosomal dominant and sporadic monocytopenia immunodeficiency syndrome: diagnostic features and clinical implications. Haematologica. 2011;96(8):1221–5. https://doi.org/10.3324/haematol.2011.041152.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5. https://doi.org/10.1182/blood-2011-05-356352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood. 2011;118(10):2656–8. https://doi.org/10.1182/blood-2011-06-360313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shaw M-A, Clayton D, Atkinson SE, Williams H, Miller N, Sibthorpe D, et al. Linkage of rheumatoid arthritis to the candidate gene NRAMP1 on 2q35. J Med Genet. 1996;33:672–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell. 1996;87(2):307–17.

    Article  PubMed  CAS  Google Scholar 

  30. Driggers PH, Elenbaas BA, An JB, Lee IJ, Ozato K. Two upstream elements activate transcription of a major histocompatibility complex class I gene in vitro. Nucleic Acids Res. 1992;20(10):2533–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365(2):127–38. https://doi.org/10.1056/NEJMoa1100066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ragimbeau J, Dondi E, Alcover A, Eid P, Uze G, Pellegrini S. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J. 2003;22(3):537–47. https://doi.org/10.1093/emboj/cdg038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55. https://doi.org/10.1016/j.immuni.2006.09.009.

    Article  PubMed  CAS  Google Scholar 

  34. Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB complex. Cell. 1998;95(6):749–58.

    Article  PubMed  CAS  Google Scholar 

  35. Staples E, Morillo-Gutierrez B, Davies J, Petersheim D, Massaad M, Slatter M, et al. Disseminated Mycobacterium malmoense and Salmonella infections associated with a novel variant in NFKBIA. J Clin Immunol. 2017;37(5):415–8. https://doi.org/10.1007/s10875-017-0390-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee AJ, Moncada-Vélez M, Picard C, Llanora G, Huang C, Abel L, et al. Severe mycobacterial diseases in a patient with GOF IκBα mutation without EDA. J Clin Immunol. 2016;36:12–5.

    Article  PubMed  Google Scholar 

  37. Yoshioka T, Nishikomori R, Hara J, Okada K, Hashii Y, Okafuji I, et al. Autosomal dominant anhidrotic ectodermal dysplasia with immunodeficiency caused by a novel NFKBIA mutation, p.Ser36Tyr, presents with mild ectodermal dysplasia and non-infectious systemic inflammation. J Clin Immunol. 2013;33(7):1165–74. https://doi.org/10.1007/s10875-013-9924-z.

    Article  PubMed  CAS  Google Scholar 

  38. Burns SO, Plagnol V, Gutierrez BM, Al Zahrani D, Curtis J, Gaspar M, et al. Immunodeficiency and disseminated mycobacterial infection associated with homozygous nonsense mutation of IKKbeta. J Allergy Clin Immunol. 2014;134(1):215–8. https://doi.org/10.1016/j.jaci.2013.12.1093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nielsen C, Jakobsen MA, Larsen MJ, Muller AC, Hansen S, Lillevang ST, et al. Immunodeficiency associated with a nonsense mutation of IKBKB. J Clin Immunol. 2014;34(8):916–21. https://doi.org/10.1007/s10875-014-0097-1.

    Article  PubMed  Google Scholar 

  40. Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, Golabi M, et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet. 2000;67(6):1555–62. https://doi.org/10.1086/316914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku CL, Puel A, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203(7):1745–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang Y, Ma CS, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213(11):2413–35. https://doi.org/10.1084/jem.20160576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bustamante J, Arias A, Vogt G, Picard C, Galicia L, Prando C, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12(3):213–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. • Haverkamp MH, van de Vosse E, van Dissel JT. Nontuberculous mycobacterial infections in children with inborn errors of the immune system. J Inf Secur. 2014;68(Suppl 1):S134–50. https://doi.org/10.1016/j.jinf.2013.09.024. An illustrated review of the basic science of IL-12, IFNγ, and IFNα signaling pathways with a detailed discussion of individual defects causing MSMD.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William K. Dolen.

Ethics declarations

Conflict of Interest

Drs. Reed and Dolen declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Allergy and Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reed, B., Dolen, W.K. The Child with Recurrent Mycobacterial Disease. Curr Allergy Asthma Rep 18, 44 (2018). https://doi.org/10.1007/s11882-018-0797-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-018-0797-3

Keywords

Navigation