Skip to main content

Combined Immunodeficiencies

  • Chapter
  • First Online:
Cellular Primary Immunodeficiencies

Part of the book series: Rare Diseases of the Immune System ((RDIS))

Abstract

Combined immunodeficiencies (CID) are a heterogeneous and expanding group of primary immunodeficiencies associated with T and B cell impaired immunity due to several genetic variants. In contrast to severe combined immunodeficiencies (SCID), CID are typically milder diseases and can have a delayed onset. Patients with CID may present with recurrent, often severe, viral, bacterial, mycobacterial, fungal, and protozoan infections, mainly affecting the respiratory and gastrointestinal tract, immune dysregulation (autoimmunity, inflammatory bowel disease, severe dermatitis, lymphoproliferation, granulomas, vasculitis), and malignancies. On laboratory evaluation, lymphocyte numbers and phenotype and humoral assessment can help to orientate the diagnosis. Genetic analysis is essential for CID classification. Most CID have an autosomal recessive mode of inheritance. The prognosis varies according to the disease and the time of diagnosis. The treatment of patients with CID is individualized, but generally it comprises supportive therapy (immunoglobulin replacement therapy and antimicrobial treatment or prophylaxis), as well as allogenic hematopoietic stem cell transplantation in selected cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fischer A, Notarangelo LD, Neven B et al (2015) Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 1:15061

    Article  PubMed  Google Scholar 

  2. Notarangelo LD, Bacchetta R, Casanova JL, Su HC (2020) Human inborn errors of immunity: an expanding universe. Sci Immunol 5(49):eabb1662

    Google Scholar 

  3. Shearer WT, Dunn E, Notarangelo LD et al (2014) Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol 133(4):1092–1098

    Article  PubMed  Google Scholar 

  4. European Society for Immunodeficiencies (2019). European Society for Immunodeficiencies website. ESID registry—working definitions for clinical diagnosis of primary immunodeficiencies/inborn errors of immunity. https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria. Accessed 3 Mar 2021

  5. Bertinchamp R, Gérard L, Boutboul D et al (2016) Exclusion of patients with a severe T-cell defect improves the definition of common variable immunodeficiency. J Allergy Clin Immunol Pract 4(6):1147–1157

    Article  PubMed  Google Scholar 

  6. Malphettes M, Gérard L, Carmagnat M et al (2009) Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis 49(9):1329–1338

    Article  CAS  PubMed  Google Scholar 

  7. von Spee-Mayer C, Koemm V, Wehr C et al (2019) Evaluating laboratory criteria for combined immunodeficiency in adult patients diagnosed with common variable immunodeficiency. Clin Immunol 203:59–62

    Article  CAS  Google Scholar 

  8. Picard C, Bobby Gaspar H et al (2018) International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee report on inborn errors of immunity. J Clin Immunol 38(1):96–128

    Article  PubMed  Google Scholar 

  9. Tangye SG, Al-Herz W, Bousfiha A et al (2020) Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40(1):24–64

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tangye SG, Al-Herz W, Bousfiha A et al (2021) The ever-increasing array of novel inborn errors of immunity: an interim update by the IUIS committee. J Clin Immunol 41(3):666–679

    Google Scholar 

  11. Puck JM (2012) Laboratory technology for population-based screening for severe combined immunodeficiency in neonates: the winner is T-cell receptor excision circles. J Allergy Clin Immunol 129(3):607–616

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schuetz C, Huck K, Gudowius S et al (2008) An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 358(19):2030–2038

    Article  CAS  PubMed  Google Scholar 

  13. Notarangelo LD, Kim MS, Walter JE, Lee YN (2016) Human RAG mutations: biochemistry and clinical implications. Nat Rev Immunol 16(4):234–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boutboul D, Kuehn HS, Van de Wyngaert Z et al (2018) Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest 128(7):3071–3087

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuhny M, Forbes LR, Çakan E et al (2020) Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID. J Clin Invest 130(8):4411–4422

    Google Scholar 

  16. Tangye SG (2020) It’s that time of year-APRIL promotes humoral immunity in humans. J Allergy Clin Immunol 146(5):1013–1015

    Google Scholar 

  17. Drutman SB, Mansouri D, Mahdaviani SA et al (2020) Fatal cytomegalovirus infection in an adult with inherited NOS2 deficiency. N Engl J Med 382(5):437–445

    Google Scholar 

  18. Cook SA, Comrie WA, Poli MC et al (2020) HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science 369(6500):202–207

    Google Scholar 

  19. Castro CN, Rosenzwajg M, Carapito R et al (2020) NCKAP1L defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. J Exp Med 217(12):e20192275

    Google Scholar 

  20. Thaventhiran JED, Lango Allen H, Burren OS et al (2020) Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature 583(7814):90–95

    Google Scholar 

  21. Okano T, Imai K, Naruto T et al (2020) Whole-exome sequencing-based approach for germline mutations in patients with inborn errors of immunity. J Clin Immunol 40(5):729–740

    Google Scholar 

  22. Maffucci P, Filion CA, Boisson B et al (2016) Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front Immunol 7:220

    Google Scholar 

  23. de Valles-Ibáñez G, Esteve-Solé A, Piquer M et al (2018) Evaluating the genetics of common variable immunodeficiency: monogenetic model and beyond. Front Immunol 9:636

    Google Scholar 

  24. Fusaro M, Rosain J, Grandin V et al (2021) Improving the diagnostic efficiency of primary immunodeficiencies with targeted next-generation sequencing. J Allergy Clin Immunol 147(2):734–737

    Google Scholar 

  25. Seidel MG, Kindle G, Gathmann B et al (2019) The European Society for Immunodeficiencies (ESID) registry working definitions for the clinical diagnosis of inborn errors of immunity. J Allergy Clin Immunol Pract 7(6):1763–1770

    Article  PubMed  Google Scholar 

  26. Fischer A, Rausell A (2016) Primary immunodeficiencies suggest redundancy within the human immune system. Sci Immunol 1(6):pii:eaah5861

    Article  Google Scholar 

  27. Notarangelo LD (2014) Combined immunodeficiencies with nonfunctional T lymphocytes. Adv Immunol 121:121–190

    Article  CAS  PubMed  Google Scholar 

  28. Brownlie RJ, Zamoyska R (2013) T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol 13(4):257–269

    Article  CAS  PubMed  Google Scholar 

  29. Fu G, Rybakin V, Brzostek J et al (2014) Fine-tuning T cell receptor signaling to control T cell development. Trends Immunol 35(7):311–318

    Google Scholar 

  30. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Google Scholar 

  31. Moens L, Gouwy M, Bosch B et al (2019) Human DOCK2 deficiency: report of a novel mutation and evidence for neutrophil dysfunction. J Clin Immunol 39(3):298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Janssen E, Geha RS (2019) Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 287(1):121–134

    Article  CAS  PubMed  Google Scholar 

  33. Bedsaul JR, Carter NM, Deibel KE et al (2018) Mechanisms of regulated and dysregulated CARD11 signaling in adaptive immunity and disease. Front Immunol 9:2105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lu HY, Bauman BM, Arjunaraja S et al (2018) The CBM-opathies-a rapidly expanding spectrum of human inborn errors of immunity caused by mutations in the CARD11-BCL10-MALT1 complex. Front Immunol 9:2078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kaustio M, Haapaniemi E, Göös H et al (2017) Damaging heterozygous mutations in NFKB1 lead to diverse immunologic phenotypes. J Allergy Clin Immunol 140(3):782–796

    Article  CAS  PubMed  Google Scholar 

  36. Blom B, Spits H (2006) Development of human lymphoid cells. Annu Rev Immunol 24:287–320

    Google Scholar 

  37. Powell MD, Read KA, Sreekumar BK, Oestreich KJ (2019) Ikaros zinc finger transcription factors: regulators of cytokine signaling pathways and CD4(+) T helper cell differentiation. Front Immunol 10:1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abdollahpour H, Appaswamy G, Kotlarz D et al (2012) The phenotype of human STK4 deficiency. Blood 119(15):3450–3457

    Google Scholar 

  39. Spolski R, Leonard WJ (2008) Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 26:57–79

    Google Scholar 

  40. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328

    Google Scholar 

  41. Elgueta R, Benson MJ, de Vries VC et al (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172

    Google Scholar 

  42. Croft M, So T, Duan W, Soroosh P (2009) The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 229(1):173–191

    Google Scholar 

  43. Calzoni E, Platt CD, Keles S et al (2019) F-BAR domain only protein 1 (FCHO1) deficiency is a novel cause of combined immune deficiency in human subjects. J Allergy Clin Immunol 143(6):2317–2321.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lyszkiewicz M, Ziętara N et al (2020) Human FCHO1 deficiency reveals role for clathrin-mediated endocytosis in development and function of T cells. Nat Commun 11(1):1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bousfiha A, Jeddane L, Picard C et al (2018) The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol 38(1):129–143

    Article  PubMed  Google Scholar 

  46. Notarangelo L (2019) Combined immunodeficiencies. In: Orange JS, TePas E (eds) UpToDate. https://www.uptodate.com/contents/combined-immunodeficiencies. Accessed 24 Feb 2020

  47. Casanova JL (2015) Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A 112(51):E7128–E7137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mauracher AA, Gujer E, Bachmann LM et al (2021) Patterns of immune dysregulation in primary immunodeficiencies: a systematic review. J Allergy Clin Immunol Pract 9(2):792–802.e10

    Google Scholar 

  49. Byun M, Ma CS, Akçay A et al (2013) Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. J Exp Med 210(9):1743–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crequer A, Troeger A, Patin E et al (2012) Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J Clin Invest 122(9):3239–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruffner MA, Sullivan KE, Henrickson SE (2017) Recurrent and sustained viral infections in primary immunodeficiencies. Front Immunol 8:665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Meyts I, Bucciol G, Quinti I et al (2021) Coronavirus disease 2019 in patients with inborn errors of immunity: an international study. J Allergy Clin Immunol 147(2):520–531

    Google Scholar 

  53. Shields AM, Burns SO, Savic S et al (2021) COVID-19 in patients with primary and secondary immunodeficiency: the United Kingdom experience. J Allergy Clin Immunol 147(3):870–875.e1

    Google Scholar 

  54. Delavari S, Abolhassani H, Abolnezhadian F et al (2021) Impact of SARS-CoV-2 pandemic on patients with primary immunodeficiency. J Clin Immunol 41(2):345–355

    Google Scholar 

  55. Notarangelo LD (2010) Primary immunodeficiencies. J Allergy Clin Immunol 125(2 Suppl 2):S182–S194

    Article  PubMed  Google Scholar 

  56. Grencis RK (2015) Immunity to helminths: resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu Rev Immunol 33:201–225

    Article  CAS  PubMed  Google Scholar 

  57. Fischer A, Provot J, Jais JP et al (2017) Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J Allergy Clin Immunol 140(5):1388–1393.e8

    Article  CAS  PubMed  Google Scholar 

  58. Bousfiha A, Jeddane L, Ailal F et al (2013) A phenotypic approach for IUIS PID classification and diagnosis: guidelines for clinicians at the bedside. J Clin Immunol 33(6):1078–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Biggs CM, Keles S, Chatila TA (2017) DOCK8 deficiency: insights into pathophysiology, clinical features and management. Clin Immunol 181:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dorjbal B, Stinson JR, Ma CA et al (2019) Hypomorphic caspase activation and recruitment domain 11 (CARD11) mutations associated with diverse immunologic phenotypes with or without atopic disease. J Allergy Clin Immunol 143(4):1482–1495

    Article  CAS  PubMed  Google Scholar 

  61. França TT, Barreiros LA, Al-Ramadi BK et al (2019) CD40 ligand deficiency: treatment strategies and novel therapeutic perspectives. Expert Rev Clin Immunol 15(5):529–540

    Article  PubMed  Google Scholar 

  62. Morgan NV, Goddard S, Cardno TS et al (2011) Mutation in the TCRα subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRαβ+ T cells. J Clin Invest 121(2):695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hanna S, Etzioni A (2014) MHC class I and II deficiencies. J Allergy Clin Immunol 134(2):269–275

    Article  CAS  PubMed  Google Scholar 

  64. Badran YR, Dedeoglu F, Leyva Castillo JM et al (2017) Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J Exp Med 214(7):1937–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chan AY, Punwani D, Kadlecek TA et al (2016) A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med 213(2):155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roifman CM, Dadi H, Somech R et al (2010) Characterization of ζ-associated protein, 70 kd (ZAP70)-deficient human lymphocytes. J Allergy Clin Immunol 126(6):1226–1233.e1

    Article  CAS  PubMed  Google Scholar 

  67. Notarangelo LD (2009) Primary immunodeficiencies (PIDs) presenting with cytopenias. Hematology Am Soc Hematol Educ Program:139–143

    Google Scholar 

  68. Seidel MG (2014) Autoimmune and other cytopenias in primary immunodeficiencies: pathomechanisms, novel differential diagnoses, and treatment. Blood 124(15):2337–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grimbacher B, Warnatz K, Yong PFK et al (2016) The crossroads of autoimmunity and immunodeficiency: lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol 137(1):3–17

    Article  CAS  PubMed  Google Scholar 

  70. Mayor PC, Eng KH, Singel KL et al (2018) Cancer in primary immunodeficiency diseases: cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol 141(3):1028–1035

    Article  PubMed  Google Scholar 

  71. Hauck F, Voss R, Urban C, Seidel MG (2018) Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J Allergy Clin Immunol 141(1):59–68.e4

    Article  PubMed  Google Scholar 

  72. Herber M, Mertz P, Dieudonné Y, Guffroy B et al (2020) Primary immunodeficiencies and lymphoma: a systematic review of literature. Leuk Lymphoma 61(2):274–284

    Article  CAS  PubMed  Google Scholar 

  73. Riaz IB, Faridi W, Patnaik MM, Abraham RS (2019) A systematic review on predisposition to lymphoid (B and T cell) neoplasias in patients with primary immunodeficiencies and immune dysregulatory disorders (inborn errors of immunity). Front Immunol 10:777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sawada A, Inoue M (2018) Hematopoietic stem cell transplantation for the treatment of Epstein-Barr virus-associated T- or NK-cell lymphoproliferative diseases and associated disorders. Front Pediatr 6:334

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tangye SG (2020) Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum Genet 139:885–901

    Article  PubMed  Google Scholar 

  76. Latour S, Winter S (2018) Inherited immunodeficiencies with high predisposition to Epstein-Barr Virus-driven lymphoproliferative diseases. Front Immunol 9:1103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. de la Morena MT (2016) Clinical phenotypes of hyper-IgM syndromes. J Allergy Clin Immunol Pract 4(6):1023–1036

    Article  PubMed  Google Scholar 

  78. Haas OA (2019) Primary immunodeficiency and cancer predisposition revisited: embedding two closely related concepts into an integrative conceptual framework. Front Immunol 9:3136

    Google Scholar 

  79. Puck JM (2019) Newborn screening for severe combined immunodeficiency and T-cell lymphopenia. Immunol Rev 287(1):241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amatuni GS, Currier RJ, Church JA et al (2019) Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California, 2010-2017. Pediatrics 143(2):pii:e20182300

    Article  Google Scholar 

  81. Currier R, Puck JM (2021) SCID newborn screening: what we’ve learned. J Allergy Clin Immunol 147(2):417–426

    Google Scholar 

  82. Hausmann O, Warnatz K (2014) Immunodeficiency in adults: a practical guide for the allergist. Allergo J Int 23:261–268

    Google Scholar 

  83. Bonilla FA, Khan DA, Ballas ZK et al (2015) Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 136(5):1186–205.e1-78

    Article  PubMed  Google Scholar 

  84. Abraham RS, Butte MJ (2021) The new “Wholly Trinity” in the diagnosis and management of inborn errors of immunity. J Allergy Clin Immunol Pract 9(2):613–625

    Google Scholar 

  85. Conley ME, Casanova JL (2014) Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol 30:17–23

    Article  CAS  PubMed  Google Scholar 

  86. Stray-Pedersen A, Sorte HS, Samarakoon P et al (2017) Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol 139(1):232–245

    Article  PubMed  Google Scholar 

  87. Sullivan KE (2021) The scary world of variants of uncertain significance (VUS): a hitchhiker’s guide to interpretation. J Allergy Clin Immunol 147(2):492–494

    Google Scholar 

  88. Itan Y, Casanova JL (2015) Can the impact of human genetic variations be predicted? Proc Natl Acad Sci U S A 112(37):11426–11427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mahlaoui N, Warnatz K, Jones A et al (2017) Advances in the care of primary immunodeficiencies (PIDs): from birth to adulthood. J Clin Immunol 37(5):452–460

    Google Scholar 

  90. van de Ven AA, Warnatz K (2015) The autoimmune conundrum in common variable immunodeficiency disorders. Curr Opin Allergy Clin Immunol 15(6):514–524

    Google Scholar 

  91. American Academy of Pediatrics Infectious Diseases and Bronchiolitis Guidelines Committee. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 2014;134:415-420

    Google Scholar 

  92. Olchanski N, Hansen RN, Pope E, et al. Palivizumab prophylaxis for respiratory syncytial virus: examining the evidence around value. Open Forum Infect Dis. 2018;5(3):ofy031.

    Google Scholar 

  93. Bonilla FA (2018) Update: vaccines in primary immunodeficiency. J Allergy Clin Immunol 141(2):474–481

    Article  CAS  PubMed  Google Scholar 

  94. Medical Advisory Committee of the Immune Deficiency Foundation, Shearer WT, Fleisher TA et al (2014) Recommendations for live viral and bacterial vaccines in immunodeficient patients and their close contacts. J Allergy Clin Immunol 133(4):961–966

    Article  CAS  Google Scholar 

  95. Sobh A, Bonilla FA (2016) Vaccination in primary immunodeficiency disorders. J Allergy Clin Immunol Pract 4(6):1066–1075

    Article  PubMed  Google Scholar 

  96. Speckmann C, Doerken S, Aiuti A et al (2017) A prospective study on the natural history of patients with profound combined immunodeficiency: An interim analysis. J Allergy Clin Immunol 139(4):1302–1310.e4

    Article  PubMed  Google Scholar 

  97. Gennery AR, Slatter MA, Grandin L et al (2010) Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol 126(3):602–10.e1-11

    Article  PubMed  Google Scholar 

  98. Gennery AR, Albert MH, Slatter MA, Lankester A (2019) Hematopoietic stem cell transplantation for primary immunodeficiencies. Front Pediatr 7:445

    Article  PubMed  PubMed Central  Google Scholar 

  99. Neven B, Ferrua F (2020) Hematopoietic stem cell transplantation for combined immunodeficiencies, on behalf of IEWP-EBMT. Front Pediatr 7:552

    Google Scholar 

  100. European Society for Blood and Marrow Transplantation (2017) EBMT website. EBMT/ESID guidelines for haematopoietic stem cell transplantation for primary immunodeficiencies. https://www.ebmt.org/sites/default/files/migration_legacy_files/document/Inborn%20Errors%20Working%20Party%20ESID%20EBMT%20HSCT%20Guidelines%202017.pdf. Accessed 3 Mar 2021

  101. Ferrua F, Galimberti S, Courteille V et al (2019) Hematopoietic stem cell transplantation for CD40 ligand deficiency: results from an EBMT/ESID-IEWP-SCETIDE-PIDTC study. J Allergy Clin Immunol 143(6):2238–2253

    Article  CAS  PubMed  Google Scholar 

  102. de la Morena MT, Leonard D, Torgerson TR et al (2017) Long-term outcomes of 176 patients with X-linked hyper-IgM syndrome treated with or without hematopoietic cell transplantation. J Allergy Clin Immunol 139(4):1282–1292

    Article  PubMed  CAS  Google Scholar 

  103. Aydin SE, Freeman AF, Al-Herz W et al (2019) Hematopoietic stem cell transplantation as treatment for patients with DOCK8 deficiency. J Allergy Clin Immunol Pract 7(3):848–855

    Article  PubMed  Google Scholar 

  104. Clinical Immunology Society Clinical Immunology Society website. Application for list service access. https://cis.execinc.com/edibo/Lists. Accessed 3 Mar 2021

  105. Clinical Immunology Society Clinical Immunology Society website. CIS-PIDD forum. http://mindbender.dundee.net/read/?forum=cis-pidd. Accessed 3 Mar 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Liotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liotta, F., Salvati, L. (2021). Combined Immunodeficiencies. In: D'Elios, M.M., Baldari, C.T., Annunziato, F. (eds) Cellular Primary Immunodeficiencies. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-030-70107-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70107-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70106-2

  • Online ISBN: 978-3-030-70107-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics