Skip to main content

Antifungal Resistance in Animal Medicine: Current State and Future Challenges

  • Chapter
  • First Online:
Fungal Diseases in Animals

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The emergence of resistance to antifungal drugs, and in particular to the azoles, is causing great concern in the scientific community. However, the actual impact of antifungal resistance on animal health and the farming system is mostly unknown, as animal mycoses have traditionally received much less attention than those affecting humans, and in vitro antifungal susceptibility testing of animal isolates is still uncommon. In this chapter, we briefly review the main characteristics of antifungal therapy in the veterinary setting and the current knowledge on antifungal resistance of some major animal pathogenic fungi, including yeasts such as Candida spp., Cryptococcus gattii, and Malassezia pachydermatis, and the filamentous fungus Aspergillus fumigatus. In addition, we discuss some issues that should be addressed in order to optimize antifungal therapies in animal medicine and minimize the impact caused by resistant strains, including the species-level identification of pathogenic fungi, the establishment of meaningful breakpoints for antifungal resistance of veterinary isolates, and the reduction of the environmental impact of antifungal use. We conclude that veterinarians and other animal health professionals should take action to demand more resources for improving the monitoring of antifungal resistances in veterinary clinics and animal facilities worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez-Pérez S, Blanco JL, Peláez T, Cutuli M, García ME (2014a) In vitro amphotericin B susceptibility of Malassezia pachydermatis determined by the CLSI broth microdilution method and Etest using lipid-enriched media. Antimicrob Agents Chemother 58(7):4203–4206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Álvarez-Pérez S, Mellado E, Serrano D, Blanco JL, García ME, Kwon M, Muñoz P, Cuenca-Estrella M, Bouza E, Peláez T (2014b) Polyphasic characterization of fungal isolates from a published case of invasive aspergillosis reveals misidentification of Aspergillus felis as Aspergillus viridinutans. J Med Microbiol 63(4):617–619

    Article  PubMed  Google Scholar 

  • Álvarez-Pérez S, de Vega C, Pozo MI, Lenaerts M, Van Assche A, Herrera CM, Jacquemyn H, Lievens B (2016a) Nectar yeasts of the Metschnikowia clade are highly susceptible to azole antifungals widely used in medicine and agriculture. FEMS Yeast Res 16(1):fov115. https://doi.org/10.1093/femsyr/fov115

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Pérez S, García ME, Cutuli MT, Fermín ML, Daza MA, Peláez T, Blanco JL (2016b) Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog. Med Mycol Case Rep 11:9–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Pérez S, García ME, Peláez T, Martínez-Nevado E, Blanco JL (2016c) Antifungal susceptibility testing of ascomycetous yeasts isolated from animals. Antimicrob Agents Chemother 60(8):5026–5028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aneke CI, Rhimi W, Pellicoro C, Cantacessi C, Otranto D, Cafarchia C (2020) The best type of inoculum for testing the antifungal drug susceptibility of Microsporum canis: in vivo and in vitro results. Mycoses 63(7):711–716

    Article  CAS  PubMed  Google Scholar 

  • Antonissen G, Martel A (2018) Antifungal therapy in birds: old drugs in a new jacket. Vet Clin North Am Exot Anim Pract 21(2):355–377

    Article  PubMed  Google Scholar 

  • Arendrup MC, Verweij PE, Mouton JW, Lagrou K, Meletiadis J (2017) Multicentre validation of 4-well azole agar plates as a screening method for detection of clinically relevant azole-resistant Aspergillus fumigatus. J Antimicrob Chemother 72(12):3325–3333

    Article  CAS  PubMed  Google Scholar 

  • Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J, and the Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST) (2020a) EUCAST DEFINITIVE DOCUMENT E.DEF 9.3.2. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. https://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/ast_of_moulds/. Accessed on 25 Aug 2020)

  • Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J, and the Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST) (2020b) EUCAST DEFINITIVE DOCUMENT E.DEF 7.3.2. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. https://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/. Accessed on 25 Aug 2020)

  • Asfaw M, Dawit D (2016) Review on major fungal disease of poultry. Br J Poult Sci 6(1):16–25

    Google Scholar 

  • Azevedo MM, Faria-Ramos I, Cruz LC, Pina-Vaz C, Rodrigues AG (2015) Genesis of azole antifungal resistance from agriculture to clinical settings. J Agric Food Chem 63(34):7463–7468

    Article  CAS  PubMed  Google Scholar 

  • Barrs VR, van Doorn TM, Houbraken J, Kidd SE, Martin P, Pinheiro MD, Richardson M, Varga J, Samson RA (2013) Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats, and dogs. PLoS One 8(6):e64871. https://doi.org/10.1371/journal.pone.0064871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrs VR, Talbot JJ (2020) Fungal rhinosinusitis and disseminated invasive aspergillosis in cats. Vet Clin North Am Small Anim Pract 50(2):331–357

    Article  PubMed  Google Scholar 

  • Bártíková H, Podlipná R, Skálová L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301

    Article  PubMed  CAS  Google Scholar 

  • Beardsley J, Halliday CL, Chen SC, Sorrell TC (2018) Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiol 13(10):1175–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belanger ES, Yang E, Forrest GN (2015) Combination antifungal therapy: when, where, and why. Curr Clin Micro Rpt 2:67–75

    Article  Google Scholar 

  • Berger S, El Chazli Y, Babu AF, Coste AT (2017) Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Front Microbiol 8:1024. https://doi.org/10.3389/fmicb.2017.01024

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond R, Morris DO, Guillot J, Bensignor EJ, Robson D, Mason KV, Kano R, Hill PB (2020) Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 31(1):75. https://doi.org/10.1111/vde.12809

    Article  PubMed  Google Scholar 

  • Brilhante RS, Bittencourt PV, Castelo-Branco Dde S, de Oliveira JS, Alencar LP, Cordeiro RA, Pinheiro M, Nogueira-Filho EF, Pereira-Neto Wde A, Sidrim JJ, Rocha MF (2016) Trends in antifungal susceptibility and virulence of Candida spp. from the nasolacrimal duct of horses. Med Mycol 54(2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Buil JB, Hare RK, Zwaan BJ, Arendrup MC, Melchers WJG, Verweij PE (2019) The fading boundaries between patient and environmental routes of triazole resistance selection in Aspergillus fumigatus. PLoS Pathog 15(8):e1007858. https://doi.org/10.1371/journal.ppat.1007858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunskoek PE, Seyedmousavi S, Gans SJ, van Vierzen PBJ, Melchers WJG, van Elk CE, Mouton JW, Verweij PE (2017) Successful treatment of azole-resistant invasive aspergillosis in a bottlenose dolphin with high-dose posaconazole. Med Mycol Case Rep 16:16–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Cafarchia C, Figueredo LA, Favuzzi V, Surico MR, Colao V, Iatta R, Montagna MT, Otranto D (2012a) Assessment of the antifungal susceptibility of Malassezia pachydermatis in various media using a CLSI protocol. Vet Microbiol 159(3–4):536–540

    Article  CAS  PubMed  Google Scholar 

  • Cafarchia C, Figueredo LA, Iatta R, Colao V, Montagna MT, Otranto D (2012b) In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods. Med Mycol 50(8):795–801

    Article  CAS  PubMed  Google Scholar 

  • Cafarchia C, Figueredo LA, Iatta R, Montagna MT, Otranto D (2012c) In vitro antifungal susceptibility of Malassezia pachydermatis from dogs with and without skin lesions. Vet Microbiol 155(2–4):395–398

    CAS  PubMed  Google Scholar 

  • Cafarchia C, Iatta R, Immediato D, Puttilli MR, Otranto D (2015) Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values. Med Mycol 53(7):743–748

    Article  CAS  PubMed  Google Scholar 

  • Castelo-Branco DSCM, Paiva MAN, Teixeira CEC, Caetano ÉP, Guedes GMM, Cordeiro RA, Brilhante RSN, Rocha MFG, Sidrim JJC (2020, 135) Azole resistance in Candida from animals calls for the One Health approach to tackle the emergence of antimicrobial resistance. Med Mycol Myz. https://doi.org/10.1093/mmy/myz135

  • CDC (2019) Antibiotic resistance threats in the United States, 2019. Department of Health and Human Services. Centers for Disease Control and Prevention, Atlanta, GA, USA

    Google Scholar 

  • Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cuenca-Estrella M, Gómez-López A, Boekhout T (2012) Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol 50(11):3641–3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZF, Ying GG (2015) Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: a review. Environ Int 84:142–153

    Article  CAS  PubMed  Google Scholar 

  • CLSI (2008a) Development of in vitro susceptibility testing criteria and quality control parameters for veterinary antimicrobial agents; approved guideline, 3rd edn. CLSI document VET02-A3. Clinical and Laboratory Standards Institute, Wayne, PA, USA

    Google Scholar 

  • CLSI (2008b) Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard, 3rd edn. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, PA, USA

    Google Scholar 

  • CLSI (2008c) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, 2nd edn. CLSI document M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA, USA

    Google Scholar 

  • CLSI (2013) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard, 4th edn. CLSI document VET01-A4, Clinical and Laboratory Standards Institute, Wayne, PA, USA

    Google Scholar 

  • CLSI (2020) Epidemiological cutoff values for antifungal susceptibility testing, 3rd edn. CLSI supplement M59. Clinical and Laboratory Standards Institute, Wayne, PA, USA

    Google Scholar 

  • Cordeiro RA, de Oliveira JS, Castelo-Branco Dde S, Teixeira CE, Marques FJ, Bittencourt PV, Carvalho VL, Bandeira Tde J, Brilhante RS, Moreira JL, Pereira-Neto Wde A, Sidrim JJ, Rocha MF (2015) Candida tropicalis isolates obtained from veterinary sources show resistance to azoles and produce virulence factors. Med Mycol 53(2):145–152

    Article  CAS  Google Scholar 

  • Cordeiro RA, Sales JA, Castelo-Branco DSCM, Brilhante RSN, Ponte YB, Dos Santos Araújo G, Mendes PBL, Pereira VS, Alencar LP, Pinheiro AQ, Sidrim JJC, Rocha MFG (2017) Candida parapsilosis complex in veterinary practice: a historical overview, biology, virulence attributes and antifungal susceptibility traits. Vet Microbiol 212:22–30

    Article  PubMed  Google Scholar 

  • Criseo G, Scordino F, Romeo O (2015) Current methods for identifying clinically important cryptic Candida species. J Microbiol Methods 111:50–56

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Hawksworth DL, Wingfield MJ (2015) Identifying and naming plant-pathogenic fungi: past, present, and future. Annu Rev Phytopathol 53:247–267

    Article  CAS  PubMed  Google Scholar 

  • Delarze E, Sanglard D (2015) Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist Updat 23:12–19

    Article  PubMed  Google Scholar 

  • Dias MF, Quaresma-Santos MV, Bernardes-Filho F, Amorim AG, Schechtman RC, Azulay DR (2013) Update on therapy for superficial mycoses: review article part I. An Bras Dermatol 88(5):764–774

    Article  PubMed  PubMed Central  Google Scholar 

  • Dijksterhuis J, van Doorn T, Samson R, Postma J (2011) Effects of seven fungicides on non-target aquatic fungi. Water Air Soil Pollut 222(1–4):421–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrov MR, Kosol S, Smidt H, Buijse L, Van den Brink PJ, Van Wijngaarden RP, Brock TC, Maltby L (2014) Assessing effects of the fungicide tebuconazole to heterotrophic microbes in aquatic microcosms. Sci Total Environ 490:1002–1011

    Article  CAS  PubMed  Google Scholar 

  • Elad D (2018) Therapy of non-dermatophytic mycoses in animals. J Fungi 4(4):120. https://doi.org/10.3390/jof4040120

    Article  CAS  Google Scholar 

  • Elad D, Segal E (2018) Diagnostic aspects of veterinary and human aspergillosis. Front Microbiol 9:1303. https://doi.org/10.3389/fmicb.2018.01303

    Article  PubMed  PubMed Central  Google Scholar 

  • Faria-Ramos I, Tavares PR, Farinha S, Neves-Maia J, Miranda IM, Silva RM, Estevinho LM, Pina-Vaz C, Rodrigues AG (2014) Environmental azole fungicide, prochloraz, can induce cross-resistance to medical triazoles in Candida glabrata. FEMS Yeast Res 14(7):1119–1123

    CAS  PubMed  Google Scholar 

  • Favre B, Hofbauer B, Hildering KS, Ryder NS (2003) Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J Clin Microbiol 41(10):4817–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360(6390):739–742

    Article  CAS  PubMed  Google Scholar 

  • Foy DS, Trepanier LA (2010) Antifungal treatment of small animal veterinary patients. Vet Clin North Am Small Anim Pract 40(6):1171–1188

    Article  PubMed  Google Scholar 

  • Gintjee TJ, Donnelley MA, Thompson GR 3rd (2020) Aspiring antifungals: review of current antifungal pipeline developments. J Fungi 6(1):28. https://doi.org/10.3390/jof6010028

    Article  CAS  Google Scholar 

  • Gubbins PO, Amsden JR (2005) Drug-drug interactions of antifungal agents and implications for patient care. Expert Opin Pharmacother 6(13):2231–2243

    Article  CAS  PubMed  Google Scholar 

  • Guinea J, Verweij PE, Meletiadis J, Mouton JW, Barchiesi F, Arendrup MC, Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST) (2019) How to: EUCAST recommendations on the screening procedure E.Def 10.1 for the detection of azole resistance in Aspergillus fumigatus isolates using four-well azole-containing agar plates. Clin Microbiol Infect 25(6):681–687

    Article  CAS  PubMed  Google Scholar 

  • Howard SJ (2014) Multi-resistant aspergillosis due to cryptic species. Mycopathologia 178:435–439

    Article  CAS  PubMed  Google Scholar 

  • Johnson MD, Perfect JR (2010) Use of antifungal combination therapy: agents, order, and timing. Curr Fungal Infect Rep 4(2):87–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Kano R, Yokoi S, Kariya N, Oshimo K, Kamata H (2019) Multi-azole-resistant strain of Malassezia pachydermatis isolated from a canine Malassezia dermatitis. Med Mycol 57(3):346–350

    Article  CAS  PubMed  Google Scholar 

  • Kano R, Aramaki C, Murayama N, Mori Y, Yamagishi K, Yokoi S, Kamata H (2020) High multi-azole-resistant Malassezia pachydermatis clinical isolates from canine Malassezia dermatitis. Med Mycol 58(2):197–200

    CAS  PubMed  Google Scholar 

  • Kim M, Cho YJ, Park M, Choi Y, Hwang SY, Jung WH (2018) Genomic tandem quadruplication is associated with ketoconazole resistance in Malassezia pachydermatis. J Microbiol Biotechnol 28(11):1937–1945

    Article  CAS  PubMed  Google Scholar 

  • Klastersky J (2004) Empirical antifungal therapy. Int J Antimicrob Agents 23(2):105–112

    Article  CAS  PubMed  Google Scholar 

  • Kwon-Chung KJ (2018) Foreword. In: Seyedmousavi S, de Hoog GS, Guillot J, Verweij PE (eds) Emerging and epizonotic fungal infections in animals. Springer, Cham, Switzerland, pp v–vi

    Google Scholar 

  • Mazu TK, Bricker BA, Flores-Rozas H, Ablordeppey SY (2016) The mechanistic targets of antifungal agents: an overview. Mini Rev Med Chem 16(7):555–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriello KA, Coyner K, Paterson S, Mignon B (2017) Diagnosis and treatment of dermatophytosis in dogs and cats. Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 28(3):266–e68

    Article  PubMed  Google Scholar 

  • Nakasu CCT, Waller SB, Ripoll MK, Ferreira MRA, Conceição FR, Gomes ADR, Osório LDG, de Faria RO, Cleff MB (2020) Feline sporotrichosis: a case series of itraconazole-resistant Sporothrix brasiliensis infection. Braz J Microbiol. https://doi.org/10.1007/s42770-020-00290-5

  • Nawrot U, Wieliczko A, Włodarczyk K, Kurzyk E, Brillowska-Dąbrowska A (2019) Low frequency of itraconazole resistance found among Aspergillus fumigatus originating from poultry farms in Southwest Poland. J Mycol Med 29(1):24–27

    Article  CAS  PubMed  Google Scholar 

  • Ostrosky-Zeichner L (2012) Invasive mycoses: diagnostic challenges. Am J Med 125(1 Suppl):S14–S24

    Article  PubMed  Google Scholar 

  • Ostrosky-Zeichner L, Andes D (2017) The role of in vitro susceptibility testing in the management of Candida and Aspergillus. J Infect Dis 216(Suppl 3):S452–S457

    Article  CAS  PubMed  Google Scholar 

  • Paulussen C, Hallsworth JE, Álvarez-Pérez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B (2017) Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 10(2):296–322

    Article  PubMed  Google Scholar 

  • Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A (2017) The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis 17(12):e383–e392

    Article  PubMed  Google Scholar 

  • Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7):309–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocha MFG, Bandeira SP, de Alencar LP, Melo LM, Sales JA, Paiva MAN, Teixeira CEC, Castelo-Branco DSCM, Pereira-Neto WA, Cordeiro RA, Sidrim JJC, Brilhante RSN (2017) Azole resistance in Candida albicans from animals: highlights on efflux pump activity and gene overexpression. Mycoses 60(7):462–468

    Article  CAS  PubMed  Google Scholar 

  • Rochette F, Engelen M, Vanden Bossche H (2003) Antifungal agents of use in animal health – practical applications. J Vet Pharmacol Ther 26(1):31–53

    Google Scholar 

  • Sanguinetti M, Posteraro B (2018) Susceptibility testing of fungi to antifungal drugs. J Fungi 4(3):110. https://doi.org/10.3390/jof4030110

    Article  CAS  Google Scholar 

  • Schoustra SE, Debets AJM, Rijs AJMM, Zhang J, Snelders E, Leendertse PC, Melchers WJG, Rietveld AG, Zwaan BJ, Verweij PE (2019) Environmental hotspots for azole resistance selection of Aspergillus fumigatus, the Netherlands. Emerg Infect Dis 25(7):1347–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedmousavi S, Wiederhold NP, Ebel F, Hedayati MT, Rafati H, Verweij PE (2018) Antifungal use in veterinary practice and emergence of resistance. In: Seyedmousavi S, de Hoog GS, Guillot J, Verweij PE (eds) Emerging and epizonotic fungal infections in animals. Springer, Cham, Switzerland, pp 359–402

    Chapter  Google Scholar 

  • Sykes JE, Hodge G, Singapuri A, Yang ML, Gelli A, Thompson GR 3rd (2017) In vivo development of fluconazole resistance in serial Cryptococcus gattii isolates from a cat. Med Mycol 55(4):396–401

    CAS  PubMed  Google Scholar 

  • Talbot JJ, Kidd SE, Martin P, Beatty JA, Barrs VR (2015) Azole resistance in canine and feline isolates of Aspergillus fumigatus. Comp Immunol Microbiol Infect Dis 42:37–41

    Article  PubMed  Google Scholar 

  • Talbot JJ, Frisvad JC, Meis JF, Hagen F, Verweij PE, Hibbs DE, Lai F, Groundwater PW, Samson RA, Kidd SE, Barrs VR, Houbraken J (2019) cyp51A mutations, extrolite profiles, and antifungal susceptibility in clinical and environmental isolates of the Aspergillus viridinutans species complex. Antimicrob Agents Chemother 63(11):e00632–e00619. https://doi.org/10.1128/AAC.00632-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toutain PL, Bousquet-Mélou A, Damborg P, Ferran AA, Mevius D, Pelligand L, Veldman KT, Lees P (2017) En route towards European clinical breakpoints for veterinary antimicrobial susceptibility testing: a position paper explaining the VetCAST approach. Front Microbiol 8:2344. https://doi.org/10.3389/fmicb.2017.02344

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Linden JW, Camps SM, Kampinga GA, Arends JP, Debets-Ossenkopp YJ, Haas PJ, Rijnders BJ, Kuijper EJ, van Tiel FH, Varga J, Karawajczyk A, Zoll J, Melchers WJ, Verweij PE (2013) Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis 57(4):513–520

    Article  PubMed  CAS  Google Scholar 

  • Wang DY, Gricourt M, Arné P, Thierry S, Seguin D, Chermette R, Huang WY, Dannaoui E, Botterel F, Guillot J (2014) Mutations in the Cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus isolated from avian farms in France and China. Poult Sci 93(1):12–15

    Article  CAS  PubMed  Google Scholar 

  • Wiederhold NP (2017) Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist 10:249–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Sergio Álvarez-Pérez acknowledges a “Ramón y Cajal” contract funded by the Spanish Ministry of Science and Innovation [RYC2018-023847-I]. The funders had no role in the preparation of the manuscript or decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Álvarez-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez-Pérez, S., García, M.E., Anega, B., Blanco, J.L. (2021). Antifungal Resistance in Animal Medicine: Current State and Future Challenges. In: Gupta, A., Pratap Singh, N. (eds) Fungal Diseases in Animals. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-69507-1_10

Download citation

Publish with us

Policies and ethics