Skip to main content

Management of a Woman at Elevated Risk for Breast Cancer

  • Chapter
  • First Online:
Breast & Gynecological Diseases

Abstract

Early breast cancer detection decreases mortality. As a result, it is imperative that primary care physicians are able to identify those individuals who are at an increased risk for breast cancer and understand how to help the patients manage that risk. Hereditary cancer syndromes in particular are dangerous and under-recognized. Various risk assessment tools are available for patients who are not at hereditary risk to help determine who may be eligible for enhanced screening or those who may benefit from preventive medication, and many imaging centers have now incorporated a form of risk assessment with associated recommendations into their reporting structure. Some patients even wish to consider risk-reducing surgery, which requires special counseling and support. All women should be risk stratified as early as possible so that those at a high risk can benefit from risk-stratified care. The management of patients at increased risk for the development of breast cancer has become increasingly challenging and nuanced with the exploding field of germline genetic testing and its implications for personalized care, and an increasing number of available options for high-quality supplemental breast imaging, particularly for the patient with dense breast tissue. This chapter aims to outline the identification and management of the high-risk patient, focusing on salient genetic and nongenetic risk factors, available options for risk management, and recommendations for risk modification for all women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mattiuzzi C, Lippi G. Current cancer epidemiology glossary. J Epidemiol Glob Health. 2019;9(4):217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eyre H, Blount L. American Cancer Society. J Oncol Pract. 2006;2(2):99.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tung N, Battelli C, Allen B, Kaldate R, Bhatnagar S, Bowles K, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  4. Kurian AW, Hare EE, Mills MA, Kingham KE, McPherson L, Whittemore AS, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol. 2014;32(19):2001–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weiss AS, Swisher E, Pennington KP, Radke M, Khasnavis N, Garcia RL, et al. Inherited mutations in fallopian tube, ovarian and primary peritoneal carcinoma: changes in diagnoses and mutational frequency over 20 years. Gynecol Oncol [Internet]. 2020;159(1):214–20. Available from: https://doi.org/10.1016/j.ygyno.2020.06.509.

    Article  CAS  Google Scholar 

  6. Ford D, Easton DF, Peto J. Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am J Hum Genet. 1995;57:1457–62.

    Google Scholar 

  7. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips K-A, Mooij TM, Roos-Blom M-J, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402.

    Article  CAS  PubMed  Google Scholar 

  8. Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, et al. Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol. 2020;38(7):674–85.

    Article  CAS  PubMed  Google Scholar 

  9. Daly MB, Pilarski R, Yurgelun MB, Berry MP, Buys SS, Dickson P, et al. NCCN Guidelines insights: genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 1.2020. J Natl Compr Cancer Netw. 2020;18(4):380–91.

    Article  Google Scholar 

  10. Hansford S, Kaurah P, Li-Chang H, Woo M, Senz J, Pinheiro H, et al. Hereditary diffuse gastric cancer syndrome CDH1 mutations and beyond. JAMA Oncol. 2015;1(1):23–32.

    Article  PubMed  Google Scholar 

  11. Roberts ME, Ranola JMO, Marshall ML, Susswein LR, Graceffo S, et al. Comparison of CDH1 penetrance estimates in clinically ascertained families vs families ascertained for multiple gastric cancers supplemental content. JAMA Oncol. 2019;5(9):1325–31.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bevers TB, Helvie M, Bonaccio E, Calhoun KE, Daly MB, Farrar WB, et al. Breast cancer screening and diagnosis, version 3.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2018;16(11):1362–89.

    Article  Google Scholar 

  13. Tan M-H, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.

    Google Scholar 

  14. Bubien V, Bonnet F, Brouste V, Hoppe S, Barouk-Simonet E, David A, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50:255–63.

    Article  CAS  PubMed  Google Scholar 

  15. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12(10):3209–15.

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27(8):1250–6.

    Article  CAS  PubMed  Google Scholar 

  17. Childers CP, Childers KK, Maggard-Gibbons M, Macinko J. National estimates of genetic testing in women with a history of breast or ovarian cancer. J Clin Oncol. 2017;35(34):3800–6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hughes KS. Genetic testing: what problem are we trying to solve? J Clin Oncol [Internet]. 2017;35(34):3789–91. Available from: https://doi.org/10.1200/JCO.2017.74.7899.

    Article  Google Scholar 

  19. Hu C, Polley EC, Yadav S, Lilyquist J, Shimelis H, Na J, et al. The contribution of germline predisposition gene mutations to clinical subtypes of invasive breast cancer from a clinical genetic testing cohort. J Natl Cancer Inst. 2020;112(12):1231–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. DeFrancesco MS, Waldman RN, Pearlstone MM, Karanik D, Bernhisel R, Logan J, et al. Hereditary cancer risk assessment and genetic testing in the community-practice setting. Obstet Gynecol. 2018;132(5):1121–9.

    Article  PubMed  Google Scholar 

  21. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, et al. Risk assessment, genetic counseling, and genetic testing for BRCA -related cancer: US preventive services task force recommendation statement. JAMA – J Am Med Assoc. 2019;322(7):652–65.

    Article  Google Scholar 

  22. Syndromes HC, Assessment R. Hereditary cancer syndromes and risk assessment. Obstet Gynecol. 2019;134(6):1366–7.

    Article  Google Scholar 

  23. Buys SS, Sandbach JF, Gammon A, Patel G, Kidd J, Brown KL, et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer. 2017;123(10):1721–30.

    Article  CAS  PubMed  Google Scholar 

  24. Tung N, Lin NU, Kidd J, Allen BA, Singh N, Wenstrup RJ, et al. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol. 2016;34(13):1460–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kurian AW, Li Y, Hamilton AS, Ward KC, Hawley ST, Morrow M, et al. Gaps in incorporating germline genetic testing into treatment decision-making for early-stage breast cancer. J Clin Oncol. 2017;35(20):2232–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Randall LM, Pothuri B, Swisher EM, Diaz JP, Buchanan A, Witkop CT, et al. Multi-disciplinary summit on genetics services for women with gynecologic cancers: a society of gynecologic oncology white paper. Gynecol Oncol [Internet]. 2017;146(2):217–24. Available from: https://doi.org/10.1016/j.ygyno.2017.06.002.

    Article  Google Scholar 

  27. Bevers TB, Ward JH, Arun BK, Colditz GA, Cowan KH, Daly MB, et al. Breast cancer risk reduction, version 2.2015 clinical practice guidelines in oncology clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2015;13(7):880–915.

    Article  Google Scholar 

  28. Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375(5):443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Darst BF, Dadaev T, Saunders E, Sheng X, Wan P, Pooler L, et al. Germline sequencing DNA repair genes in 5,545 men with aggressive and non-aggressive prostate cancer. J Natl Cancer Inst [Internet]. 2020. Available from: https://doi.org/10.1093/jnci/djaa132.

  30. Cremin C, Lee MKC, Hong Q, Hoeschen C, Mackenzie A, Dixon K, et al. Burden of hereditary cancer susceptibility in unselected patients with pancreatic ductal adenocarcinoma referred for germline screening. Cancer Med. 2020;9(11):4004–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walsh T, Mandell JB, Norquist BM, Casadei S, Gulsuner S, Lee MK, et al. Genetic predisposition to breast cancer due to mutations other than BRCA1 and BRCA2 founder alleles among Ashkenazi Jewish women. JAMA Oncol. 2017;3(12):1647–53.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Frey MK, Kopparam RV, Ni Zhou Z, Fields JC, Buskwofie A, Carlson AD, et al. Prevalence of nonfounder BRCA1/2 mutations in Ashkenazi Jewish patients presenting for genetic testing at a hereditary breast and ovarian cancer center. Cancer. 2019;125(5):690–7.

    Article  CAS  PubMed  Google Scholar 

  33. Beitsch PD, Whitworth PW, Hughes K, Patel R, Rosen B, Compagnoni G, et al. Underdiagnosis of hereditary breast cancer: are genetic testing guidelines a tool or an obstacle? J Clin Oncol. 2019;37(6):453–60.

    Article  PubMed  Google Scholar 

  34. Manahan ER, Kuerer HM, Sebastian M, Hughes KS, Boughey JC, Euhus DM, et al. Consensus guidelines on genetic’ testing for hereditary breast cancer from the American Society of Breast Surgeons. Ann Surg Oncol [Internet]. 2019;26(10):3025–31. Available from: https://doi.org/10.1245/s10434-019-07549-8.

    Article  Google Scholar 

  35. Donald CG, Sanders AK. The genetic information nondiscrimination act of 2008. J Divers Manag. 2008;3(4):33–46.

    Google Scholar 

  36. Churpek JE, Walsh T, Zheng Y, Moton Z, Thornton AM, Lee MK, et al. Inherited predisposition to breast cancer among African American women. Breast Cancer Res Treat. 2015;149(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  37. Shaaban AM, Sloane JP, West CR, Moore FR, Jarvis C, Williams EMI, Foster CS. Histopathologic types of benign breast lesions and the risk of breast cancer: case-control study. Am J Surg Pathol. 2002;26(4):421–30.

    Article  CAS  PubMed  Google Scholar 

  38. Hartmann L, Sellers T, Frost M. Benign breast disease and the risk of breast cancer. N Engl J Med [Internet]. 2005 [cited 2020 Oct 31];353(3):229–37. Available from: www.nejm.org.

  39. Wang J, Costantino JP, Tan-Chiu E, Wickerham DL, Paik S, Wolmark N. Lower-category benign breast disease and the risk of invasive breast cancer. Available from: https://academic.oup.com/jnci/article/96/8/616/2521209.

  40. Hartmann LC, Radisky DC, Frost MH, Santen RJ, Vierkant RA, Benetti LL, et al. Understanding the premalignant potential of atypical hyperplasia through its natural history: a longitudinal cohort study. 2014. Available from: www.aacrjournals.org.

  41. Hartmann LC, Degnim AC, Santen RJ, Dupont WD, Ghosh K. Atypical hyperplasia of the breast — risk assessment and management options. N Engl J Med. 2015;372(1):78–89.

    Google Scholar 

  42. Simpson JF. Update on atypical epithelial hyperplasia and ductal carcinoma in situ. Pathology. 2009;41(1):36–9.

    Article  PubMed  Google Scholar 

  43. Waters E, Mcneel T, Mccaskill W. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res Treat. 2012;134:875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Library WO, Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. Invit Rev J Pathol J Pathol [Internet]. 2011;223:307–17. Available from: www.pathsoc.org.uk.

    Google Scholar 

  45. Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchió C, Reis-Filho JS. Breast cancer precursors revisited: molecular features and progression pathways. Histopathology. 2010;57:171–92.

    Article  PubMed  Google Scholar 

  46. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst. 1998;90(18):1371–88.

    Google Scholar 

  47. Hartmann L, Sellers T, Frost M. Benign breast disease and the risk of breast cancer. N Engl J Med. 2005;353(3):229–37.

    Article  CAS  PubMed  Google Scholar 

  48. Hartmann LC, Radisky DC, Frost MH, Santen RJ, Vierkant RA, Benetti LL, et al. Understanding the premalignant potential of atypical hyperplasia through its natural history: a longitudinal cohort study. Cancer Prev Res (Phila). 2014;7(2):211–7.

    Article  CAS  Google Scholar 

  49. Hartmann LC, Degnim AC, Dupont WD. Atypical hyperplasia of the breast. N Engl J Med. 2015;372(13):1271–2.

    PubMed  Google Scholar 

  50. Kerlikowske K, Gard CC, Tice JA, Ziv E, Cummings SR, Miglioretti DL, et al. Risk factors that increase risk of estrogen receptor-positive and-negative breast cancer. J Natl Cancer Inst. 2016;109(5):djw276.

    Article  PubMed Central  Google Scholar 

  51. Urban JA. Bilaterality of cancer of the breast. Biopsy of the opposite breast. Cancer. 1967;20(11):1867–70.

    Article  CAS  PubMed  Google Scholar 

  52. Fisher ER, Land SR, Fisher B, Mamounas E, Gilarski L, Wolmark N. Pathologic findings from the national surgical adjuvant breast and bowel project: twelve-year observations concerning lobular carcinoma in situ. Cancer. 2004;100(2):238–44.

    Article  PubMed  Google Scholar 

  53. Chuba PJ, Hamre MR, Yap J, Severson RK, Lucas D, Shamsa F, et al. Bilateral risk for subsequent breast cancer after lobular carcinoma-in-situ: analysis of surveillance, epidemiology, and end results data. J Clin Oncol. 2005;23:5534–41.

    Article  PubMed  Google Scholar 

  54. King TA, Pilewskie M, Muhsen S, Patil S, Mautner SK, Park A, et al. Lobular carcinoma in situ: a 29-year longitudinal experience evaluating clinicopathologic features and breast cancer risk. J Clin Oncol. 2015;33(33):3945–52.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wong SM, King T, Boileau J-F, Barry WT, Golshan M, Golshan M, et al. Population-based analysis of breast cancer incidence and survival outcomes in women diagnosed with lobular carcinoma in situ. Soc Surg Oncol 70th Annu Cancer Symp. 2017;24:15–8.

    Google Scholar 

  56. Chivukula M, Bhargava R, Tseng G, Dabbs DJ. Clinicopathologic implications of “flat epithelial atypia” in core needle biopsy specimens of the breast. Am J Clin Pathol [Internet]. 2009;131:802–8. Available from: https://academic.oup.com/ajcp/article-abstract/131/6/802/1760543.

    Article  Google Scholar 

  57. Khoumais NA, Scaranelo AM, Moshonov H, Kulkarni SR, Miller N, Mccready DR, et al. Incidence of breast cancer in patients with pure flat epithelial atypia diagnosed at core-needle biopsy of the breast. Ann Surg Oncol. 2013;20(1):133–8.

    Article  PubMed  Google Scholar 

  58. Said SM, Visscher DW, Nassar A, Frank RD, Vierkant RA, Frost MH, et al. Flat epithelial atypia and risk of breast cancer: a Mayo cohort study. Cancer. 2015;121(10):1548–55.

    Article  PubMed  Google Scholar 

  59. Byrne C, Schairer C, Brinton LA, Wolfe J, Parekh N, Salane M, et al. Effects of mammographic density and benign breast disease on breast cancer risk (United States). Cancer Causes Control. 2001;12(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  60. Wolfe JN, Saftlas AF, Salan M. Mammographic parenchymal patterns and quantitative evaluation of mammographic densities: a case-control study. AJR Am J Roentgenol. 1987;148(6):1087–92.

    Article  CAS  PubMed  Google Scholar 

  61. Orman B, Oyd NF, Illian D, Ite GS, Ennifer Tone JS, Noma Unasekara AG, Allas E, Nglish DR, Argaret MCC, Redie MR, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347:886–94.

    Article  Google Scholar 

  62. Mccormack VA, Dos I, Silva S. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev. 2006;15(6):1159–69.

    Article  Google Scholar 

  63. Bertrand KA, Tamimi RM, Scott CG, Jensen MR, Shane Pankratz V, Visscher D, et al. Mammographic density and risk of breast cancer by age and tumor characteristics. Breast Cancer Res. 2013;15(6):R104.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Greendale GA, Reboussin BA, Sie A, Singh HR, Olson LK, Gatewood O, et al. Effects of estrogen and estrogen-progestin on mammographic parenchymal density. Ann Intern Med. 1999;130(4 Pt 1):262–9.

    Article  CAS  PubMed  Google Scholar 

  65. Greendale GA, Reboussin BA, Slone S, Wasilauskas C, Pike MC, Ursin G. Postmenopausal hormone therapy and change in mammographic density [Internet]. Available from: https://academic.oup.com/jnci/article/95/1/30/2520191.

  66. Vachon CM, Sellers TA, Vierkant RA, Wu F-F, Brandt KR. Case-control study of increased mammographic breast density response to hormone replacement therapy. Cancer Epidemiol Biomark Prev. 2002;11(11):1382–8.

    CAS  Google Scholar 

  67. Stefanick ML, Anderson GL, Margolis KL, Hendrix SL, Rodabough RJ, Paskett ED, et al. Effects of conjugated equine estrogens on breast cancer and mammography screening in postmenopausal women with hysterectomy [Internet]. Available from: https://jamanetwork.com/.

  68. Kerlikowske K, Cook AJ, Buist DSM, Cummings SR, Vachon C, Vacek P, et al. Breast cancer risk by breast density, menopause, and postmenopausal hormone therapy use. J Clin Oncol. 2010;28(24):3830–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Engmann NJ, Golmakani MK, Miglioretti DL, Sprague BL, Kerlikowske K. Population-attributable risk proportion of clinical risk factors for breast cancer supplemental content. JAMA Oncol. 2017;3(9):1228–37.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Travis LB, Hill D, Dores GM, Gospodarowicz M, Van Leeuwen FE, Holowaty E, et al. Cumulative absolute breast cancer risk for young women treated for Hodgkin lymphoma. J Natl Cancer Inst. 2005;97(19):1428–37.

    Article  PubMed  Google Scholar 

  71. Moskowitz CS, Chou JF, Wolden SL, Bernstein JL, Malhotra J, Friedman DN, et al. Republic of China. J Clin Oncol. 2014;32:2217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Conway JL, Connors JM, Tyldesley S, Savage KJ, Campbell BA, Zheng YY, et al. Secondary breast cancer risk by radiation volume in women with Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2017;97(1):35–41.

    Article  PubMed  Google Scholar 

  73. Opstal-Van Winden AWJ, De Haan HG, Hauptmann M, Schmidt MK, Broeks A, Russell NS, et al. Genetic susceptibility to radiation-induced breast cancer after Hodgkin lymphoma. Blood. 2019;133:1130–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Grobmyer SR, Pederson HJ, Valente SA, Al-Hilli Z, Radford D, Djohan R, et al. Evolving indications and long-term oncological outcomes of risk-reducing bilateral nipple-sparing mastectomy. BJS Open. 2019;3(2):169–73.

    Article  CAS  PubMed  Google Scholar 

  75. Haas JS, Kaplan CP, Des Jarlais G, Gildengoin V, Pérez-Stable EJ, Kerlikowske K. Perceived risk of breast cancer among women at average and increased risk. J Women’s Heal. 2005;14(9):845–51.

    Article  Google Scholar 

  76. Metcalfe KA, Quan M-L, Eisen A, Cil T, Sun P, Narod SA. The impact of having a sister diagnosed with breast cancer on cancer-related distress and breast cancer risk perception. Cancer. 2013;119:1722–30.

    Article  PubMed  Google Scholar 

  77. Shieh Y, Hu D, Ma L, Huntsman S, Gard CC, Leung JWT, et al. Breast cancer risk prediction using a clinical risk model and polygenic risk score. Breast Cancer Res Treat. 2016;159(3):513–25.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gail MH, Pfeiffer RM. Breast cancer risk model requirements for counseling, prevention, and screening. J Natl Cancer Inst. 2018;110(9):994–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cintolo-Gonzalez JA, Braun D, Blackford AL, Mazzola E, Acar A, Plichta JK, et al. Breast cancer risk models: a comprehensive overview of existing models, validation, and clinical applications. Breast Cancer Res Treat. 2017;164(2):263–84.

    Google Scholar 

  80. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, et al. Medication use to reduce risk of breast cancer: US preventive services task force recommendation statement. JAMA – J Am Med Assoc. 2019;322(9):857–67.

    Article  Google Scholar 

  81. Bevers TB, Ward JH, Ahrendt GM, Colditz GA, Daly MB, Gandhi S, et al. National comprehensive cancer network clinical practice guidelines in oncology; breast cancer risk reduction version 1.2020 [Internet]. 2020 [cited 2020 May 7]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/breast_risk.pdf.

  82. Pankratz VS, Hartmann LC, Degnim AC, Vierkant RA, Ghosh K, Vachon CM, et al. Assessment of the accuracy of the Gail model in women with atypical hyperplasia. J Clin Oncol. 2008;26(33):5374–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Barke LD, Freivogel ME. Breast cancer risk assessment models and high-risk screening. Radiol Clin N Am. 2017;55(3):457–74.

    Article  PubMed  Google Scholar 

  84. Visvanathan K, Fabian CJ, Bantug E, Brewster AM, Davidson NE, Decensi A, et al. Use of endocrine therapy for breast cancer risk reduction: ASCO clinical practice guideline update. J Clin Oncol. 2019;37:3152–65.

    Article  CAS  PubMed  Google Scholar 

  85. Evans DGR, Howell A. Breast cancer risk-assessment models. Breast Cancer Res. 2007;9(5):1–8.

    Article  CAS  Google Scholar 

  86. Berry DA, Iversen ESJ, Gudbjartsson DF, Hiller EH, Garber JE, Peshkin BN, et al. BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(11):2701–12.

    Article  CAS  Google Scholar 

  87. Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley S, et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet Med. 2019;21(8):1708–18.

    Article  PubMed  PubMed Central  Google Scholar 

  88. McCarthy AM, Guan Z, Welch M, Griffin ME, Sippo DA, Deng Z, et al. Performance of breast cancer risk-assessment models in a large mammography cohort. J Natl Cancer Inst. 2020;112(5):489–97.

    Article  PubMed  CAS  Google Scholar 

  89. Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common genetic variation and breast cancer risk-past, present, and future. Cancer Epidemiol Biomark Prev. 2018;27(4):380–94.

    Article  CAS  Google Scholar 

  90. Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Publ Gr. 2015;47:373–80.

    CAS  Google Scholar 

  91. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45(4):353–61.

    Google Scholar 

  92. Couch FJ, Wang X, McGuffog L, Lee A, Olswold C, Kuchenbaecker KB, et al. Fabienne Prieur 111, Francesca Damiola 9 [Internet]. Ontario Cancer Genetics Network. [cited 2020 Nov 1]:13. Available from: www.plosgenetics.org.

  93. Gallagher S, Hughes E, Wagner S, Tshiaba P, Rosenthal E, Roa BB, et al. Association of a polygenic risk score with breast cancer among women carriers of high- and moderate-risk breast cancer genes. JAMA Netw Open. 2020;3(7):e208501.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Muranen TA, Greco D, Blomqvist C, Aittomäki K, Khan S, Hogervorst F, et al. Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genet Med. 2017;19(5):599–603.

    Google Scholar 

  95. Kuchenbaecker KB, Mcguffog L, Barrowdale D, Lee A, Soucy P, Dennis J, et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2017;109(7):djw302.

    Article  PubMed Central  CAS  Google Scholar 

  96. Barton M, Harris R, Sw F, Nusbaum NJ. Role of the Clinical Breast Examination in Breast Cancer Screening. J Am Geriatr Soc. 2001;49(7):991–2.

    Google Scholar 

  97. Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003;138(3):168–75.

    Article  PubMed  Google Scholar 

  98. Kolb TM, Lichy J, Newhouse JH. Abbreviations: BI-RADS Breast Imaging Reporting and Data System HRT hormonal replacement therapy PE physical examination comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence T. Radiology. 2002;225:165–75.

    Article  PubMed  Google Scholar 

  99. Lo G, Scaranelo AM, Aboras H, Ghai S, Kulkarni S, Fleming R, et al. Evaluation of the utility of screening mammography for high-risk women undergoing screening breast MR imaging. Radiology. 2017;285:36–43.

    Article  PubMed  Google Scholar 

  100. Webb ML, Cady B, Michaelson JS, Bush DM, Calvillo KZ, et al. A failure analysis of invasive breast cancer most deaths from disease occur in women not regularly screened. Cancer. 2014;120:2839–85.

    Article  PubMed  Google Scholar 

  101. Armes JE, Egan AJM, Southey MC, Dite GS, McCredie MRE, Giles GG, et al. The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations: a population-based study. Cancer. 1998;83(11):2335–45.

    Article  CAS  PubMed  Google Scholar 

  102. Dent R, Warner E. Screening for hereditary breast cancer. Semin Oncol. 2007;34(5):392–400.

    Article  PubMed  Google Scholar 

  103. Metcalfe K, Lynch HT, Ghadirian P, Tung N, Olivotto I, Warner E, et al. Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(12):2328–35.

    Article  CAS  Google Scholar 

  104. Komenaka IK, Ditkoff B-A, Joseph K-A, Russo D, Gorroochurn P, Ward M, et al. The development of interval breast malignancies in patients with BRCA mutations. Cancer. 2004;100(10):2079–83.

    Article  CAS  PubMed  Google Scholar 

  105. Bevers TB, Helvie M, Bonaccio E, Calhoun KE, Daly MB, Farrar WB, et al. Breast cancer screening and diagnosis, version 3.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16(11):1362–89.

    Article  PubMed  Google Scholar 

  106. Bernardi D, Li T, Pellegrini M, Macaskill P, Valentini M, Fantò C, et al. Effect of integrating digital breast tomosynthesis (3D-mammography) with acquired or synthetic 2D-mammography on radiologists’ true-positive and false-positive detection in a population screening trial: a descriptive study. Eur J Radiol [Internet]. 2018;106(May 2018):26–31. Available from: https://doi.org/10.1016/j.ejrad.2018.07.008.

  107. Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA – J Am Med Assoc. 2014;311(24):2499–507.

    Article  CAS  Google Scholar 

  108. Ciatto S, Houssami N, Bernardi D, Caumo F, Pellegrini M, Brunelli S, et al. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol [Internet]. 2013;14(7):583–9. Available from: https://doi.org/10.1016/S1470-2045(13)70134-7.

    Article  Google Scholar 

  109. Haas BM, Kalra V, Geisel J, Raghu M, Durand M, Philpotts LE. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology. 2013;269(3):694–700.

    Article  PubMed  Google Scholar 

  110. Heijnsdijk EAM, Warner E, Gilbert FJ, Tilanus-Linthorst MMA, Evans G, Causer PA, et al. Differences in natural history between breast cancers in BRCA1 and BRCA2 mutation carriers and effects of MRI Screening-MRISC, MARIBS, and Canadian studies combined. Cancer Epidemiol Biomark Prev. 2012;21(9):1458–68.

    Article  Google Scholar 

  111. Lord SJ, Lei W, Craft P, Cawson JN, Morris I, Walleser S, et al. A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur J Cancer. 2007;43(13):1905–17.

    Article  CAS  PubMed  Google Scholar 

  112. Mann RM, Kuhl CK, Kinkel K, Boetes C. Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol. 2008;18:1307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    Google Scholar 

  114. Mann RM, Kuhl CK, Moy L. Contrast-enhanced MRI for breast cancer screening screening for breast cancer mammography. J Magn Reson Imaging. 2019;50:377–90.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Evans DG, Kesavan N, Lim Y. MRI Breast screening in high-risk women: cancer detection and survival analysis. Breast Cancer Res Treat. 2014;145(3):663–72.

    Article  PubMed  Google Scholar 

  116. Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR. J Am Coll Radiol [Internet]. 2018;15(3):408–14. Available from: https://doi.org/10.1016/j.jacr.2017.11.034.

    Article  Google Scholar 

  117. American College of Radiology. Practice parameter for the performance of contrast-enhanced magnetic resonance imaging (CE-MRI) of the breast. 2018;1076:1–11. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Contrast-Breast.pdf?la=en.

  118. Grimm LJ, Soo MS, Yoon S, Kim C, Ghate SV, Johnson KS. Abbreviated screening protocol for breast MRI. A feasibility study. Acad Radiol [Internet]. 2015;22(9):1157–62. Available from: https://doi.org/10.1016/j.acra.2015.06.004.

    Article  Google Scholar 

  119. Harvey SC, Di Carlo PA, Lee B, Obadina E, Sippo D, Mullen L. An abbreviated protocol for high-risk screening breast MRI saves time and resources. J Am Coll Radiol [Internet]. 2016;13(11):R74–80. Available from: https://doi.org/10.1016/j.jacr.2016.09.031.

    Article  Google Scholar 

  120. Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers RD, Bieling HB. Abbreviated breast Magnetic Resonance Imaging (MRI): first postcontrast subtracted images and maximum-intensity projection – a novel approach to breast cancer screening with MRI. J Clin Oncol. 2014;32(22):2304–10.

    Google Scholar 

  121. Kuhl CK, Strobel K, Bieling H, Leutner C, Schild HH, Schrading S. Supplemental breast MR imaging screening of women with average risk of breast cancer. Radiology. 2017;283:361–70.

    Article  PubMed  Google Scholar 

  122. Weinstein SP, Korhonen K, Cirelli C, Schnall MD, McDonald ES, Pantel AR, et al. Abbreviated breast magnetic resonance imaging for supplemental screening of women with dense breasts and average risk. J Clin Oncol. 2020;38(33):3874–82. https://doi.org/10.1200/JCO.19.02198.

    Article  PubMed  Google Scholar 

  123. Comstock CE, Gatsonis C, Newstead GM, Snyder BS, Gareen IF, et al. Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening. JAMA. 2020;323(8):746–56.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Geach R, Jones LI, Harding SA, Marshall A, Taylor-Phillips S, McKeown-Keegan S, et al. The potential utility of abbreviated breast MRI (FAST MRI) as a tool for breast cancer screening: a systematic review and meta-analysis. Clin Radiol. 2021;76(2):154.e11–22.

    Article  CAS  Google Scholar 

  125. Runge VM. Dechelation (Transmetalation). Investig Radiol. 2018;53(10):571–8.

    Article  CAS  Google Scholar 

  126. Gradishar W, Anderson BO, Abraham J, Aft R, Agnese D, Allison KH, et al. National comprehensive cancer network clinical practice guidelines in oncology: breast cancer version 5.2020 [Internet]. 2020 [cited 2020 Jan 9]. Available from: https://www2.tri-kobe.org/nccn/guideline/breast/english/breast.pdf.

  127. Mann RM, Hooley R, Barr RG, Moy L. Novel approaches to screening for breast cancer. Radiology. 2020;297(2):200172.

    Article  Google Scholar 

  128. Nichols HB, Stürmer T, Lee VS, Anderson C, Lee JS, Roh JM, et al. Breast cancer chemoprevention in an integrated health care setting. JCO Clin Cancer Inform. 2017;1:1–12.

    Article  PubMed  Google Scholar 

  129. Pinsky PF, Miller E, Heckman-Stoddard B, Minasian L. Use of raloxifene and tamoxifen by breast cancer risk level in a Medicare-eligible cohort. Am J Obstet Gynecol. 2018;218(6):606.e1–9.

    Article  CAS  Google Scholar 

  130. Khaliq W, Visvanathan K. Breast cancer chemoprevention: current approaches and future directions. Curr Obstet Gynecol Rep. 2012;1(1):33–41.

    Article  Google Scholar 

  131. Chlebowski RT. Current concepts in breast cancer chemoprevention. Pol Arch Med Wewn. 2014;124(4):191–9.

    PubMed  Google Scholar 

  132. Fisher B, Costantino JP, Wickerham DL, Cecchini RS, Cronin WM, Robidoux A, et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 2005;97(22):1652–62.

    Article  CAS  PubMed  Google Scholar 

  133. Sauter ER. Breast cancer prevention: current approaches and future directions. Eur J Breast Health. 2018;4:64–71.

    Google Scholar 

  134. Pruthi S, Heisey RE, Bevers TB. Chemoprevention for breast cancer. Ann Surg Oncol. 2015;22(10):3230–5.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cuzik J, Powles T, Veronesi U, Forbes J, Edwards R, Ashley S, et al. Overview of the main outcomes in breast-cancer prevention trials. Lancet. 2003;361(9354):296–300.

    Article  Google Scholar 

  136. Cummings SR, Eckert S, Krueger KA, Grady D, Powles TJ, Cauley JA, et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. JAMA [Internet]. 1999;281(23):2189–97. Available from: https://doi.org/10.1001/jama.281.23.2189.

    Article  CAS  Google Scholar 

  137. Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, Atkins JN, et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. J Am Med Assoc. 2006;295(23):2727–41.

    Article  CAS  Google Scholar 

  138. Martino S, Cauley JA, Barrett-Connor E, Powles TJ, Mershon J, Disch D, et al. Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst. 2004;96(23):1751–61.

    Article  CAS  PubMed  Google Scholar 

  139. Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, Atkins JN, et al. Update of the national surgical adjuvant breast and bowel project Study of Tamoxifen and Raloxifene (STAR) P-2 trial: preventing breast cancer. Cancer Prev Res [Internet]. 2010;3(6):696 LP–706. Available from: http://cancerpreventionresearch.aacrjournals.org/content/3/6/696.abstract.

    Article  CAS  Google Scholar 

  140. Moyer VA, on behalf of the USPSTF. Using medications to decrease the risk for breast cancer in women: recommendations from the U.S. Preventive Services Task Force. Ann Intern Med. 2013;159(10):698–708.

    PubMed  Google Scholar 

  141. DeCensi A, Puntoni M, Guerrieri-Gonzaga A, Caviglia S, Avino F, Cortesi L, et al. Randomized placebo controlled trial of low-dose tamoxifen to prevent local and contralateral recurrence in breast intraepithelial neoplasia. J Clin Oncol [Internet]. 2019;37(19):1629–37. Available from: https://doi.org/10.1200/JCO.18.01779.

    Article  CAS  Google Scholar 

  142. Goss PE, Ingle JN, Alés-Martínez JE, Cheung AM, Chlebowski RT, Wactawski-Wende J, et al. Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med. 2011;364(25):2381–91.

    Article  CAS  PubMed  Google Scholar 

  143. Perez EA, Josse RG, Pritchard KIIJ. Effect of letrozole versus placebo on bone mineral density in women with primary breast cancer completing 5 or more years of adjuvant tamoxifen therapy: a companion study to NCIC CTG MA.17. J Clin Oncol. 2016;24(22):3629–35.

    Article  CAS  Google Scholar 

  144. Cuzick J, Sestak I, Forbes JF, Dowsett M, Knox J, Cawthorn S, et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet [Internet]. 2014;383(9922):1041–8. Available from: https://doi.org/10.1016/S0140-6736(13)62292-8.

    Article  CAS  Google Scholar 

  145. Hartmann LC, Sellers TA, Schaid DJ, Frank TS, Soderberg CL, Sitta DL, et al. Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst. 2001;93(21):1633–7.

    Article  CAS  PubMed  Google Scholar 

  146. Metcalfe K, Gershman S, Ghadirian P, Lynch HT, Snyder C, Tung N, et al. Contralateral mastectomy and survival after breast cancer in carriers of BRCA1 and BRCA2 mutations: retrospective analysis. BMJ. 2014;348:g226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Duraes EFR, Schwarz GS, de Sousa JB, Duraes LC, Morisada M, Baker T, et al. Factors influencing the aesthetic outcome and quality of life after breast reconstruction: a cross-sectional study. Ann Plast Surg. 2020;84(5):494–506.

    Article  CAS  PubMed  Google Scholar 

  148. Kwong A, Chu ATW. What made her give up her breasts: a qualitative study on decisional considerations for contralateral prophylactic mastectomy among breast cancer survivors undergoing BRCA1/2 genetic testing. Asian Pac J Cancer Prev. 2012;13(5):2241–7.

    Article  PubMed  Google Scholar 

  149. Lodder LN, Frets PG, Trijsburg RW, Meijers-Heijboer EJ, Klijn JGM, Seynaeve C, et al. One year follow-up of women opting for presymptomatic testing for BRCA1 and BRCA2: emotional impact of the test outcome and decisions on risk management (surveillance or prophylactic surgery). Breast Cancer Res Treat. 2002;73(2):97–112.

    Article  CAS  PubMed  Google Scholar 

  150. Harvie M, Hooper L, Howell AH. Central obesity and breast cancer risk: a systematic review. Obes Rev [Internet]. 2003;4(3):157–73. Available from: https://doi.org/10.1046/j.1467-789x.2003.00108.x

    Article  CAS  Google Scholar 

  151. Linos E, Willett WC. Diet and breast cancer risk reduction. J Natl Compr Cancer Netw. 2007;5(8):711–8.

    Google Scholar 

  152. Ligibel JA, Alfano CM, Courneya KS, Demark-Wahnefried W, Burger RA, Chlebowski RT, et al. American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol. 2014;32(31):3568–74.

    Article  PubMed  PubMed Central  Google Scholar 

  153. World cancer research fund: about continuous update project [Internet]. [cited 2020 May 7]. Available from: https://www.wcrf.org/int/continuous-update-project.

  154. World cancer research fund: breast cancer report [Internet]. [cited 2020 May 7]. Available from: https://www.wcrf.org/sites/default/files/Breast-cancer-report.pdf.

  155. Liu K, Zhang W, Dai Z, Wang M, Tian T, Liu X, et al. Association between body mass index and breast cancer risk: evidence based on a dose–response meta-analysis. Cancer Manag Res. 2018;10:143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Eliassen AH, Colditz GA, Rosner B, Willett WC, Hankinson SE. Adult weight change and risk of postmenopausal breast cancer. JAMA [Internet]. 2006;296(2):193–201. Available from: https://doi.org/10.1001/jama.296.2.193.

    Article  CAS  Google Scholar 

  157. Eliassen AH, Hankinson SE, Rosner B, Holmes MD, Willett WC. Physical activity and risk of breast cancer among postmenopausal women. Arch Intern Med [Internet]. 2010;170(19):1758–64. Available from: https://doi.org/10.1001/archinternmed.2010.363.

    Google Scholar 

  158. Association AH. American Heart Association Guidelines for physical activity [Internet]. 2011 [cited 2020 May 7];2012. Available from: https://www.heart.org/en/get-involved/advocate/federal-priorities/physical-activity.

  159. Smith-Warner SA, Spiegelman D, Yaun SS, Van Den Brandt PA, Folsom AR, Goldbohm RA, et al. Alcohol and breast cancer in women: a pooled analysis of cohort studies. J Am Med Assoc. 1998;279(7):535–40.

    Article  CAS  Google Scholar 

  160. Thun M, Peto R, Lopez AD, Monaco JH, Henley SJ, Heath CW Jr, Doll R. Alcohol consumption and mortality among middle-aged and elderly U.S. adults. N Engl J Med. 1997;337(24):1705–14.

    Article  CAS  PubMed  Google Scholar 

  161. Enger SM, Ross RK, Paganini-Hill A, Bernstein L. Breastfeeding experience and breast cancer risk among postmenopausal women. Cancer Epidemiol Biomark Prev. 1998;7(5):365–9.

    CAS  Google Scholar 

  162. Antsey EH, Shoemaker ML, Barrera CM, O’Neil ME, Verma ABHD. Breastfeeding and breast cancer risk reduction: implications for black mothers. Am J Prev Med. 2017;53(3):S40–6.

    Article  Google Scholar 

  163. Beral V, Bull D, Doll R, Peto R, Reeves G. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50 302 women with breast cancer and 96 973 women without the disease. Lancet. 2002;360(9328):187–95.

    Article  Google Scholar 

  164. Pinkerton JAV, Aguirre FS, Blake J, Cosman F, Hodis H, Hoffstetter S, et al. The 2017 hormone therapy position statement of the North American Menopause Society. Menopause. 2017;24(7):728–53.

    Article  Google Scholar 

  165. McTiernan A, Martin CF, Peck JD, Aragaki AK, Chlebowski RT, Pisano ED, et al. Estrogen-plus-progestin use and mammographic density in postmenopausal women: women’s health initiative randomized trial. J Natl Cancer Inst. 2005;97(18):1366–76.

    Article  CAS  PubMed  Google Scholar 

  166. Manson JE, Aragaki AK, Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, et al. Menopausal hormone therapy and long-term all-cause and cause-specific mortality: the women’s health initiative randomized trials. JAMA [Internet]. 2017;318(10):927–38. Available from: https://doi.org/10.1001/jama.2017.11217.

    Article  Google Scholar 

  167. Investigators WG for the WHI. Risks and benefits of estrogen plus progestin in healthy postmenopausal women principal results from the women’s health initiative randomized controlled trial. JAMA [Internet]. 2002;288(3):321–33. Available from: https://doi.org/10.1001/jama.288.3.321.

    Article  Google Scholar 

  168. Rohan TE, Negassa A, Chlebowski RT, Habel L, McTiernan A, Ginsberg M, et al. Conjugated equine estrogen and risk of benign proliferative breast disease: a randomized controlled trial. J Natl Cancer Inst. 2008;100(8):563–71.

    Article  CAS  PubMed  Google Scholar 

  169. Mørch LS, Skovlund CW, Hannaford PC, Iversen L, Fielding S, Lidegaard Ø. Contemporary hormonal contraception and the risk of breast cancer. N Engl J Med. 2017;377(23):2228–39.

    Article  PubMed  Google Scholar 

  170. Iodice S, Barile M, Rotmensz N, Feroce I, Bonanni B, Radice P, et al. Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer. 2010;46(12):2275–84.

    Article  CAS  PubMed  Google Scholar 

  171. Care GP. ACOG Committee opinion: counseling about genetic testing and communication of genetic test results. Obstet Gynecol. 2017;130(4):e210.

    Google Scholar 

  172. Visvanathan K, Hurley P, Bantug E, Brown P, Col NF, Cuzick J, et al. Use of pharmacologic interventions for breast cancer risk reduction: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(23):2942–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina K. Sahni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahni, S.K., Sharma, N., Pederson, H.J. (2021). Management of a Woman at Elevated Risk for Breast Cancer. In: Shetty, M.K. (eds) Breast & Gynecological Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-69476-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69476-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69475-3

  • Online ISBN: 978-3-030-69476-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics